
www.manaraa.com

James A. Crowder · John N. Carbone
Shelli A. Friess

Arti� cial 
Cognition 
Architectures



www.manaraa.com

  Artifi cial Cognition Architectures 



www.manaraa.com

    



www.manaraa.com

       James   A.   Crowder     •    John N.     Carbone    
   Shelli   A.   Friess     

 Artifi cial Cognition 
Architectures                     



www.manaraa.com

 ISBN 978-1-4614-8071-6      ISBN 978-1-4614-8072-3 (eBook) 
 DOI 10.1007/978-1-4614-8072-3 
 Springer New York Heidelberg Dordrecht London 

 Library of Congress Control Number: 2013943011 

 © Springer Science+Business Media New York   2014 
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection 
with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and 
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this 
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s 
location, in its current version, and permission for use must always be obtained from Springer. 
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations 
are liable to prosecution under the respective Copyright Law. 
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
 While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for 
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with 
respect to the material contained herein. 

 Printed on acid-free paper 

 Springer is part of Springer Science+Business Media (www.springer.com)  

   James   A.   Crowder    
   Englewood ,  CO,   USA   

   Shelli   A.   Friess    
  Relevant Counseling LLC 
  Englewood ,  CO,   USA   

   John N.     Carbone    
  Raytheon Intelligence and Information 

Systems 
  McKinney ,  TX,   USA   

www.springer.com


www.manaraa.com

v

   Preface   

 This book has been written to provide an avenue for discussion concerning the 
kinds of technologies, components, methodologies, architectures, etc., that will be 
necessary to create an actual fully autonomous artifi cial life form. An artifi cial life 
form is not just a collection of hardware and software/algorithms    that magically 
becomes self-aware and begins to think, reason, learn, and make decisions like 
humans (as Hollywood would have you believe). It requires a cognitive ecosystem, 
similar to the human brain, central nervous system, etc., that all work and cooperate 
in unison to produce a complete “artifi cial brain.” It is our opinion that you cannot 
design a truly artifi cial life form from the bottom up. It must be designed as a 
 high-level cognitive entity, with all the components in place in the architecture, the 
information/knowledge models, communication mechanisms and methodologies, 
everything that is required in place in the high-level systems design fi rst. Only then 
can you begin to decompose the system design into separate subsystems and begin 
to look at what is required for each lower-level entity within the ecosystem. 

 Along with creating synthetic models, designs, and architectures that represent 
neuroscience concepts adapted for artifi cial life forms, we must also take into account 
psychological concepts that explain interactions within the human brain and adapt 
those to their artifi cial life form counterparts. These topics have been a major focus 
of Dr. Crowder and Mr. Friess’ research for the last 4 years. Dr. Carbone has spent 
many years deriving and architecting the information theoretics described in the 
book, in terms of knowledge formulation, retention, and retrieval within an artifi cial 
cognitive structure. 

 This book is a culmination of 18 years of research for all three authors. Each has 
concentrated on different aspects of Artifi cial Cognitive Architectures, bringing all 
the pieces together to form a complete picture and story of how an autonomous, 
thinking, learning, self-evolving life form could be designed and implemented. The 
authors have over 90 publications on various aspects of artifi cial intelligence, artifi -
cial psychology, information processing, and other concepts discussed here. These 
include journal publications, conference proceedings, books, and dissertations, 
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many of which can be found online. One of the most important things to understand 
about the book is that it is not the fi nal answer on Artifi cial Cognitive Architectures 
but represents the beginnings of the discussion on complete, fully autonomous 
 artifi cial life forms. 

 We have strived to create a book that appeals to researchers in all fi elds but also 
to anyone who is interested in understanding artifi cial intelligence    (AI) from a 
complete systems view. 

 Englewood, CO, USA James A. Crowder 
 McKinney, TX, USA John N. Carbone 
 Englewood, CO, USA Shelli A. Friess  
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1.1                        Striving for Artifi cial Intelligence 

 For more than 80 years, science and science fi ction have been addressing the need 
and signifi cant challenges of achieving truly autonomous machines that can act on 
their own. From the 1927 depiction of Maria in “The Eyes of the State,” to Gort in 
“The Day the Earth Stood Still,” to more semi-recent versions, HAL 9000 in “2001: 
A Space Odyssey,” “Terminator,” and Sonny from “I, Robot,” the world has been 
fascinated, amazed, amused, and terrifi ed at the thought of robots intertwined in our 
existence. 1  These creative depictions of artifi cially intelligent “robots” were suppos-
edly capable of thinking, reasoning, learning, and making decisions. Unfortunately, 
the notion of a machine, run solely by software, no matter how sophisticated and 
creatively plausible, has continuously been met with signifi cant theoretical, physical, 
and social challenges. Some would say, “troublesome” at its very core. 

 One of the reasons enabling machines with “human reasoning” is so diffi cult is 
that human learning is very dynamic in nature and hence, is somewhat fuzzy and 
random. There is no way to know when information is going to chaotically come 
our way, nor is it known how the information might apply to one of more simple or 
complex subjects, or topics in our memory pedigree [ 219 ]. The human condition is, 
and has always been, the true nature of a real-time system in a real-time environ-
ment. In order to create an Artifi cially Intelligent cognitive system that possesses 
the ability to ingest vast amounts of information content in real-time, then process 
and fuse it in order to learn, perceive, infer and ultimately evolve, a new synthetic 
humanistic and cognitively infused mathematical knowledge and relationship 
framework must be created. Recent disciplinary and trans-disciplinary advances in 
software, hardware, linguistics, semantic computing, cognitive computing, DNA 
computing, and neuroscience, suggest that computational devices can do as well as 
humans, especially across multiple information sources and information types. 2  

1   http://www.fi lmsite.org/robotsinfi lm1.html 
2   http://www.raytheon.com/technology_today/2011_i2/eyeontech_cognitive.html 

    Chapter 1   
 Introduction 

http://www.filmsite.org/robotsinfilm1.html 
http://www.raytheon.com/technology_today/2011_i2/eyeontech_cognitive.html 


www.manaraa.com

2

 Human neuroscience research shows that generating new knowledge is 
 accomplished via natural means: mental insights, scientifi c inquiry process, sensing, and 
experiencing, as well determining the context of this newly acquired knowledge, 
which characterizes the knowledge and gives it meaning [ 112 ]. True learning, therefore, 
can be a lengthy iterative process of knowledge discovery, experience, and refi ne-
ment as new information is attained. This recursive refi nement of knowledge and 
context occurs as a person’s cognitive systems interact, over a period in time, with 
their environment; where the granularity of information content results are ana-
lyzed, followed by the formation of relationships and related dependencies. 
Ultimately, knowledge is attained from assimilating the information content until it 
reaches a threshold of decreased ambiguity and level of understanding, and is then 
categorized by the brain as knowledge, which acts as a catalyst for decision-making, 
subsequently followed by actionable activity or the realization that a given objective 
or inference has been attained [ 70 ]. Any real, functioning and evolving, autono-
mous, artifi cially intelligent system must have the cognitive system to perform these 
same activities. 

 Neuroscience studies also show that in order to understand the world we live in, 
humans synthesize models that enable us to reason about what we perceive. 
Fortunately for humans, we are able to deal with fuzziness [ 22 ]. We have the ability 
to perceive the world we see and form our own concepts to describe, prescribe, and 
make decisions. To accomplish this, language and communication is “fuzzily” 
applied, adapting and evolving our communications and processing to best align our 
needs, personal and conceptual views, and our strategic goals and vision for where 
we need to grow and evolve [ 191 ]. 

 The purpose of this book is to describe concepts, theory, architecture, and practical 
designs of next generation Artifi cially Cognitive Systems (ACS). The ability to 
fully reason, learn, and self-evolve within an ACS connotes the need for a synthetic 
ability to infer about information, knowledge, observations, and experiences, and 
based upon these synthetic abilities, be able to affect changes within its synthetic, 
humanistic memories, and to allow the ACS to learn and perform tasks previously 
unknown, or to perform tasks already learned more effi ciently [ 79 ]. The act of syn-
thetically reasoning and inferring allows the ACS to construct or modify its internal 
representations of knowledge similarly to humans. Artifi cial human reasoning 
allows the ACS to fl esh out skeletal or incomplete environmental and introspective 
information, called self-assessment, similar to the way a human brain functions 
when constructing a memory [ 63 ]. Throughout this book, we will present and 
describe processes, methodologies, architectures, and designs for the core compo-
nents we believe are necessary to accomplish the creation of an Artifi cially Cognitive 
System. That being said, we have barely scratched the surface in the hunt for creat-
ing truly artificial life forms that mimic human reasoning and understanding. 
In some ways we have made great strides in understanding the human brain, its 
structure and functionality. Through trans-disciplinarily combining cognitive psy-
chology, neuroscience, engineering, bioengineering, and computer science, we are 
making signifi cant progress in bringing these human processes into artifi cially 
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intelligent systems. However, our research community has barely scratched the 
 surface in understanding everything that will be required to create a fully functional 
artifi cial evolving life form capable of human like thought, learning, reasoning, and self- 
evolving. After all, what we are striving for are artifi cial life forms that don’t say 
things like: “No Dave, I really don’t think I can do that.” But instead when asked to 
jump, say, “How high? and How far”?  

1.2     Historical Concepts of Intelligent Robots 

1.2.1     Ancient Automatons 

 Since the dawn of humankind and the original inventions of mechanical devices 
there has been human fascination with creating machines that would act on their 
own, but on our behalf. The original mechanized “automatons” utilized hydraulics, 
pneumatics, and mechanics formed into devices which astounded audiences since 
most were originally created for entertainment or play. As far back as 3500 B.C. 
humans have surrounded themselves with animated creatures, either made of stone, 
clay, or precious metals, that looked and acted like humans. It makes one ponder the 
social motivations behind what would eventually become known as robots or 
androids that could do our bidding. According to Eric Wilson [ 211 ], the human 
fascination, or possibly obsession, with humanoid machines, has resulted from what 
is known as “the fall.” Wilson’s view is that the fascination derives from human 
dejection which he believes cannot be separated from human self-consciousness. 
Therefore, he explains there is a,

  …painful rift between mind and matter, knowing and being. To heal these splits, humans 
have created mechanistic doubles untroubled by awareness of self. 

   Is Wilson right? Is the fascination with humanoid beings built into our DNA, to 
identify with beings that are devoid of the problems of morality, self-awareness, or 
emotions? The next section briefl y summarizes the last 5,500 years of fascination 
with artifi cial beings to allow you, the reader, to make the call.

    3500–100 B.C.   

   Ancient Greece  – The picture to the right is a statue of the Greek God Hephaestus 
of blacksmiths, craftsmen, artisans, and technology. Greek myths recount 
Hephaestus creating ancient robots to help him. In Roman myths, Hephaestus’ 
Roman counterpart, Vulcan, is said to have created golden slave girls. In the Greek 
myth, the translation says:

  … and in support of their master moved his attendants. These are golden, and in appearance 
like living young women. There is intelligence in their hearts, and there is speech in them 
and strength, and from the immortal gods they have learned to do things. These stirred 
nimbly in support of their master… 
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       ~1000 B.C.  – In ancient China it is reported that a mechanical engineer called Yan 
Shi presented King Mu of Zhou with a human fi gure he created. The story says the 
fi gure would walk and move its head up and down. When the king touched its chin, 
it began to sing. When he touched its hand, it began to gesture.  

   800 – 700 B.C.  – Homer’s Iliad includes the fi rst mention of an automatae known as 
a  simulacra  (what we would later call a robot). Egyptians advanced this notion 
when, in the ancient Egyptian city of Napata, a statue was created of the great 
Amun, constructed to move its arm up and down and to speak to onlookers as well. 
Although the statue was not actually “intelligent,” it is said to have had an impact on 
Egyptians of the time, portraying the perception of intelligence within their God.  

   384 – 322 B.C.  – Aristotle mused about machines that did the work for humans. “…
If every tool, when ordered, or even of its own accord, could do the work that befi ts 
it… then there would be no need either of apprentices for the master workers or of 
slaves for the lords. 3 ” …  

   200 B.C.  – The ancient Chinese created elaborate automations, including an entire 
mechanical orchestra.  

   100 B.C.  – The development of the Antikythera mechanism for calculating posi-
tions of astronomical objects.  

   100 A.D.  – A hero of Alexandria wrote, in detail, about several automata that were 
used in the theater for religious purposes opening and closing gates, based upon 
hydraulic principles.  

   1495 A.D.  – Leonardo da Vinci designs robots. Around this time da Vinci designed the 
fi rst humanoid robot. The picture to the right is of a model, based on the drawings by 
Da Vinci. This is from the Mench-Erfi nder-Genie exhibit, Berlin 2005.  

3   http://it.toolbox.com/wiki/index.php/History_of_Artifi cial_Intelligence 
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   1564 A.D.  – In his work  Dix livres de chirurgie , Pare Ambroise designs and 
published the design of a mechanical hand, which included mechanical muscles.

     

       1801 A.D.  – Joseph Jacquard builds an automaton loom controlled by “punch 
cards.” Punch cards were used as the input for the twentieth century’s earliest com-
puters. This loom is on display at the Museum of Science and Industry in Manchester, 
England

     

       1921 A.D.  – Karel Capek coined the term ‘robot’ in the play R.U.R. The play was 
called “Rossum’s Universal Robots.” The term robot came from the word ‘robota’ 
which means tedious labor.

1.2  Historical Concepts of Intelligent Robots
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       1950 A.D.  – Isaac Asimov – I, Robot    

1.2.1.1     Isaac Asimov’s Laws of Robotics 

 The Three Laws of Robotics were introduced by Isaac Asimov:

    1.    A robot may not injure a human being, or, through inaction, allow a human being 
to come to harm.   

   2.    A robot must obey the orders given it by human beings except where such orders 
would confl ict with the First Law.   

   3.    A robot must protect its own existence as long as such protection does not con-
fl ict with the First or Second Law.     

 The Three laws were fi rst introduced in Asimov’s book, “Runaround”, which was 
written in 1942. Artifi cial entities circumventing these three laws has been the subject 
of many a science fi ction story/fi lm since their introduction. Example: a robot is 
rooted with the command to protect humans. The robot, seeing that humans argue and 
kill each other decides that in order to protect humans, they must be controlled. To not 
do so, would violate the fi rst law. Its inaction, would allow humans to be harmed.    

1.3     Hollywood’s Views on Robots and Artifi cial Intelligence 

 Beginning with the movie “2001: A Space Odyssey” artifi cially intelligent entities 
were able to think, reason, and analyze the way humans do, generally with bad 
results. “Terminator” depicted intelligent machines overcoming their need for 
humanity and attempting to destroy them. Twentieth century robot infused movies 
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spanned the spectrum of good (e.g. Lost in Space, I Robot, Star Wars C3PO, Space 
Camp’s Jinx, and WALL-E) and evil (e.g. Battle Star Galactica’s Cylons, Logan’s 
Run, Blade Runner, etc.). 

 Here, we have attempted to explore some of the reasons why from ancient 
Greece, to current Hollywood screen plays, robots, androids, mechanical people, or 
whatever your favorite term is, have continuously been apart of human culture, 
literature, and myths. The next section will build on this foundational background 
and will defi ne what artifi cial cognitive systems are, why we should care, and what 
they can do for us?  

1.4     What Are Artifi cial Cognitive Systems and Why Do We 
Need Them? 

 On August 5th, 2012, Curiosity landed on Mars. It is estimated that 3.2 million 
people watched on line as the rover landed safely on the Martian surface. Curiosity 
is a marvel of technology, developed by NASA and the Jet Propulsion Laboratory 
(JPL). And while Curiosity can obey commands given from earth, and can utilize 
rules that are programmed into its system to follow those commands, Curiosity is 
not a Synthetic, Evolving Life Form (SELF). It cannot “think” for itself. It does not 
have the capability to dynamically adapt to things it has never encountered. Curiosity 
therefore relies upon aerospace engineers and software engineers to have written in 
as many of the possibilities of what might be encountered. 

 This is not because NASA and JPL do not desire these capabilities in systems like 
Curiosity, but we have not progressed in the ability to create and test such systems 
to a degree of certainty that we can trust them to be on their own (autonomous) in a 
place where we cannot effectively get to them if problems arise. 4  We cannot just 
give Curiosity goals like, look for water, or look for signs of life on Mars, and let it 
loose to determine how it thinks it can best accomplish the goals, make up its own 
tasks, and execute them as it seems best. However, what if we could? As we push 
the bounds of technology and develop more and more complicated and dangerous 
missions, the need to have systems that can think for themselves becomes crucial. 
Examples are deep space probes or deep undersea probes. 

 Our current and future space, air, and ground systems will continue to grow in 
complexity and capabilities, thus creating a serious challenge to monitor, maintain, 
and utilize them. The push toward autonomous cognitive systems makes this prob-
lem increasingly diffi cult. On-board systems must contain cognitive skills that can 
monitor, analyze, diagnose, and predict behaviors in real-time as the system encounters 
its environment. This requires creation of a SELF that can:

    1.    Act on its own behalf;   
   2.    Perform autonomous reasoning, control, and analysis;   

4   We asked AAA and they defi nitely do not go out that far. 
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   3.    Find and fi x problems within itself (self-assessment, self-regulation, and 
self-healing)   

   4.    Predict future situations and determine its own internal recommended actions, and 
create or modify its own internal automated complex memories and processes.     

 Real cognitive intelligence has several manifestations, including the ability to 
adapt to unknown situations within dynamically changing environments. Without 
the ability to adapt to new situations, an intelligent system is left to rely on a 
previously- written set of rules to handle every possible contingency. Therefore, one 
of the main reasons for this book is to describe architectures and designs for a 
Synthetic, Evolving, Life Form (SELF) which can dynamically adapt to environ-
ments, with a simple set of a priori defi ned objectives and life rules. Artifi cial 
Cognition or Artifi cial Cognitive Perception (ACP) is intended to provide a SELF 
with the ability to mimic human reasoning during information processing and 
knowledge development. This differs from a classical defi nition of Artifi cial 
Intelligence systems which imitate and are measured by how similar they create 
humanistic results. For in humans, in order to understand our environment, without 
realizing it, we synthesize environmental models enabling us to reason about what 
we perceive. Information is absorbed from a variety of diverse sources and through 
each of our fi nely tuned senses. Much of this information is imprecise, or fuzzy, in 
nature and does not have a consistent basis. Information is also riddled with vague-
ness and ambiguity; is inexplicit, and contains content often initially unclear to us. 

 As humans, we observe, perceive, and refl ect upon the world we see from con-
text developed over time via actions and experiences, internalizing what we see, 
hear, feel, etc. To continuously form internal context we communicate fuzzily with 
language, adapting and evolving our grammar to best fi t our needs. Our communi-
cation becomes dynamic and diverse; fuzziness becomes an essential feature used 
to communicate what we experience. Today, humans create virtual and cyber physi-
cal systems to emulate and interact with our physical environmental domain. If we 
truly desire systems which can more dynamically interact with the environment 
than systems today; to think, reason, act, and communicate in ways similar to 
humans, then we propose creating systems that mimic human cognitive processes. 
Today, systems closely interact with humans, indirectly and directly, peripherally 
and are even placed internally. Then why is it that the systems we build are devoid 
of “human” characteristics put into the system. What follows is a short description 
of the remainder of the book, structured to provide information, architectures, and 
designs we propose to realize such a system.  

1.5     Layout of the Book 

 We have arranged the book by areas of human consciousness and cognitive skills 
for a SELF. Below is a short description of each chapter and its relevance to our 
objective. The book is arranged as follows: 

  Chapter     2       – The Information Continuum : describes the initial theory for Artifi cial 
Cognitive Architectures (ACAs). ACA is conceptually visualized by standing in the 
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middle of the brain, at a given node, with a 360° view of information fl owing in and 
out of each neural node. Subsequently, the conceptual view results in the derivation of 
the Information Continuum theory and description of the humanistic information 
fl ow emulated via an artifi cial node in a SELF. 

  Chapter     3       – The Psychology of Artifi cial Intelligence : describes evolution of an 
 artifi cial cognitive system, and discusses constructs that mimic human processes, 
including psychological concepts of consciousness, sub-consciousness, and intuition, 
as well as concepts like the prefrontal and neo cortex. Additionally, this chapter dis-
cusses how such a system might be perceived and reacted to by others and vice versa. 

  Chapter     4       – Cognition Intelligence and the Brain : describes our approach to a 
SELF architectural framework that provides the abilities to organize information 
semantically into meaningful fuzzy concepts and information fragments (objects) 
similar to the human brain, which enables the creation of cognitive hypotheses as 
part of the SELF cognitive processing topology. This chapter also includes the 
description of the SELF Artifi cial Cognitive Neural Framework (ACNF) that 
provides the architectural constructs for artifi cial cognition and consciousness. 

  Chapter     5       – Artifi cial Memory Systems : describes the process of SELF decompos-
ing, processing, encoding, storing, and retrieving information similar to human 
memory processes. At its heart, memories involve the acquisition, categorization, 
classifi cation, storage, and retrieval (reconstruction) of information. This chapter 
will describe theory and architecture of artifi cial memory systems that will allow a 
SELF to capture information and information fragment objects, understand and cat-
egorize the context of the information, store it in short-term and long-term memories, 
and then, when required, construct memories from the information stored [ 175 ]. 

  Chapter     6       – Artifi cial Consciousness : this chapter deals with the defi nition of 
consciousness, intuition, and the notion of artifi cial perception. To create a SELF, 
we will describe concepts to achieve the ability to perceive the environment. To take 
in information, make sense out of it, learn from it, and then act on it. Here we will 
discuss the architectures and methodologies to effect Artifi cial Consciousness, 
including the Intelligent information Software Agent (ISA) framework, as well 
Fuzzy, Contextual, Self-Organizing Topical Maps that are used to classify and 
categorize information. 

  Chapter     7       – Learning in an Artifi cially Cognitive System : this chapter describes 
the process of learning analogously with discussion on lower brain function and 
higher brain function learning. Also described is how a SELF can achieve abilities to 
learn from its experiences. Hence, discussed is a mathematical framework and meth-
odologies required to provide a SELF with human-like learning. 

  Chapter     8       – Synthetic Reasoning : reasoning within a SELF implies the ability to 
infer about information, knowledge, observations, and experiences, as well as affect 
changes within the SELF cognitive framework (evolution). This chapter will 
describe the reasoning and inference architectures required to allow a SELF to 
effectuate and construct representations of its environment as it experiences and 
learns. Included are deductive, inductive, and abductive reasoning frameworks. 

1.5  Layout of the Book
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  Chapter     9       – Artifi cial Cognitive System Architectures : Many have put forth 
architectures that facilitate cognition, learning, and information processing, but 
insuffi cient to create comprehensive autonomy. Discussed here is a cognitive learning 
and reasoning framework, knowledge and cognitive ontologies, as well as cognitive 
management structures, to facilitate autonomous, self-aware, self-assessing SELF 
[ 173 ]. This chapter describes a SELF processing and management framework 
known as the Polymorphic, Evolving, Neural Learning and Processing Environment 
(PENLPE) that provides the Cognitive Management architectures required to manage 
the SELF’s cognitive processing algorithms in order to self-evolve. 

  Chapter     10       – Artifi cial Cognitive Software Architectures : Humans function via 
genetic material and biological neurons. A SELF runs on software. This chapter intro-
duces the software architectures proposed to host and facilitate artifi cial conscious-
ness and implement the architectures described in the rest of the book. This includes 
a software framework known as Intelligent information Software Agents for Artifi cial 
Consciousness (ISAAC), a dynamic neural software infrastructure which continually 
evolves neural system structures utilizing Neural Hyper-Threads. 

  Chapter     11       – SELF Physical Architectures : This chapter is dedicated to potential 
new hardware architectures to achieve a Synthetic, Evolving Life Form (SELF). 
Specifi cally, this chapter describes three-dimensional hardware structures theoreti-
cal concepts involving continuously recombinant hardware structures called Trans- 
Parallel Neural Hyper Strings. 

  Chapter     12       – Cyber Security within a Cognitive Architecture : This chapter 
describes a three-dimensional, real-time encryption scheme that provides encryption 
based upon a combination of information fragments, topics, need-to-know, and 
 context. This chapter will also describe the three-dimensional Quantum Fractal 
Encryption scheme to provide security both from outside sources, and security 
within, to keep corrupted information from permeating the self-evolving cognitive 
framework. 

  Chapter     13       – Conclusions and Next Steps : This chapter describes challenges and 
benefi ts of achieving SELF. The chapter discusses the forces involved in pushing 
towards truly “autonomous” systems; robotic human accompaniment smart enough 
to do what we ask, when we ask, and to perform tasks without intervention or super-
vision. The chapter discusses awareness factors and some of the ramifi cations of 
what we might ask of SELF. Lastly, After all, we really don’t want to hear our SELF 
reply to us: “I’m sorry Dave I really don’t think I can do that.”                   
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Research for the development of credible solutions within the Information 
Continuum has been a 17 year journey that began in the mid 1990s when the authors 
of this book were designing new ways to perform data capture, processing, analysis, 
and dissemination of high volume, high data rate, streams of information (what 
today would be called a “big data” problem). Hence, data analysis and lack of quality 
user interaction within that process are not a new problem. Users have continued to 
be challenged with keeping up with the vast volumes and multiple streams of data 
that have had to be analyzed. By the time a user had grabbed a time-slice of data, 
plotted it, and analyzed it, 100s of Gigabytes of data had passed through the system. 
In order to provide some semblance of rational attack against the onslaught of data 
we created what could be likened to a virtual window into the system that allowed 
the analysts to “walk into the middle” of the data and look at it as it flowed through 
the system. Analysts could reach out and grab a set of data, rotate it through its axes, 
and perform automated analysis on the data while remaining within the system data 
flow. This way analysts could intelligently and rapidly hop between portions of data 
within multiple data streams to gain pattern and association awareness.

The developed capability resulted in a realization that each point in time within 
the rapid data flow was an independent and discrete information continuum with 
specific and qualitative state. Subsequently, analogous thoughts began to emerge 
from research in artificial intelligence and artificially cognitive system theory. 
Envisioned was a virtual view within a portion of the human brain where one could 
view a given neural node, or a given neuron, and subsequently view data flow as 
data/information traveled in and out of the neuron. Once gathered, a hypothesis 
emerged that the analysis of brain locale, data, and study of brain processes through 
this type of virtual environment, could lead to important understanding of learning, 
inferring, storing, and retrieving (reconstruction) and/or all aspects of human neural 
processing. This led to the possibility of a theoretical Neural Information Continuum 
(NIC). This book builds upon the NIC concept as it applies to a SELF. Thus, the 
thoughts described in this book are described in terms of what components would be 
necessary to construct such a synthetic system, and what and how each artificial 
neural node in the system would be constructed from an information systems aspect.

Chapter 2
The Information Continuum
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2.1  Information Flow Within a Synthetic Continuum

One of the first areas that must be investigated when considering a SELF is the flow 
of information. Humans take in ~200,000 pieces of sensory information each and 
every second of every day of our lives. Our senses (see, hear, smell, touch, etc.) are 
constantly receiving and processing information, correlating it, reasoning about it, 
assimilating it with what we already know, and finally leading to decision making 
based upon what was learned. For a system to become dynamic, self-evolving and 
ultimately autonomous, we propose to provide these same abilities; although the 
sensors and sensory perception systems may be synthetic and different, sensing a 
variety of information types that humans can’t sense (e.g., infrared or RF informa-
tion), the processes for autonomy, which correlate, learn, infer and make decisions, 
are the same. Besides receiving information from a variety of sources and types 
(e.g., auditory, visual, textual, etc.), another important aspect of information, is that 
the content is received at different times and at a variety of latencies (temporal 
differences between information). Additional characteristics include, a variety of 
associations between the information received and information the system may 
have already learned, or information about subjects never encountered. Therefore, 
these information characteristics and the challenging real-time processing required 
for proper humanistic assimilation, help us form the theory of the Autonomic 
Information Continuum (AIC). One of the first steps in developing our theory of 
synthetic autonomic hypotheses is observing/understanding the information contin-
uum and the associated characteristics and operational relationships within the 
human brain. Hence, as we develop understanding of information flows into and out 
of neural nodes, types of information, processing mechanisms, distributions of infor-
mation, enable us to establish foundational mathematical representations of these 
characteristics and relationships.

Processing, fusing, interpreting, and ultimately learning about and from received 
information requires taking into account a host of factors related to each piece or 
fragment of information. These include:

• Information Types
• Information Latencies
• Information Associations e.g.:

 – Time, State, Strength, Relationship Type, Source, Format etc.

• Information Value
• Information Context

Mathematically modeling the information continuum field surrounding a node 
within our synthetic AIC, is accomplished via inclusion of each discrete association 
for any node u, takes the form shown in Eq. 2.1:
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where:

u represents the unit node of the system,
x represents the preprocessed input to node u,
y represents the output from node u,
w represents the relative contextual information threads and association weight of 

u with its surrounding nodes, including a decay chat describes the relative con-
textual decay over time, where:
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where:

T   represents the Contextual Information Thread j derived from Fuzzy, Self- 
Organizing Contextual Topical Maps

KD represents Knowledge Density j of Information Thread T
W  represents Weighting for Contextual Thread j, and
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(2.3)

I  represents the processing activity for node u,
z  represents the learning functionality for node u,
1/R represents the decay rate for node u,1 and
C  represents the capacity of node u.

This information field continuum equation (Eq. 2.1) allows us to analyze the 
equilibrium of nodal states within the AIC and to continuously assess the interac-
tions and growth of independent information fragments within the system. Even in 
the most dense, most complex, cluttered information environments, each fragment 
of information and each action within the AIC is entropically captured explicitly 
and implicitly within Eq. 2.1. Equation 2.1 is the entropic engine which provides the 
ongoing analysis and virtual view into a synthetic AIC. Equation 2.1 enables us to 
assess the performance and quality of processing and to understand the capacities, 
information flows, associations, and interactions of knowledge and memories within 
the system, as well as, supporting analysis and inherent understanding of real-time 
system behavior. The variables in Eq. 2.1 can be interpreted as the average values in 
a heterogeneous assembly of information nodes, where Eq. 2.1 describes the behav-
iors of the interactions among n node assemblies within a synthetic AIC processing 
system. The objective is to have the ability to measure, monitor, and assess multi- 
level states and behaviors, and how and what kinds of associative patterns are gener-
ated relative to the external inputs received by an AIC system. Equation 2.1 provides 
the analysis needed to understand the SELF’s ability for processing external content 

1 In this case, the decay represents the information’s relative value over time.
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within an AIC. Hence, real-time assessment and monitoring, and subsequent 
appropriate control, are expected to allow us to avoid developing a rogue AIC, much 
to the chagrin of Hollywood script writers.

2.2  Information Processing Models

Establishing a hierarchy of information flow within an AIC is a key objective for devel-
opment of synthetic autonomic characteristics (e.g. cognition, thinking, reasoning, and 
learning). An AIC will need to be able to ingest and process a variety of inputs from 
many diverse information sources, dissect the information into its individual informa-
tion fragments, fuse the information, and then turn this information into a formation 
which can be used to determine action- actionable intelligence. An AIC system must 
be able to assess situations previously not encountered, and then decide on a course 
of actions, based on its goals, missions, and prior foundational collected knowledge 
pedigree [183].

The underlying issues and challenges facing Artificially Intelligent systems 
today are not new. Information processing and dissemination within these types of 
systems have generally been expensive to create, operate and maintain. Other artifi-
cially intelligent system challenges involve information flow throughout the system. 
If flow is not designed carefully and purposefully, the flood of information via mes-
sages within these systems and between their software and hardware components 
can cause delays in information transfer, delaying or stunting of the learning process 
which can result in incorrect or catastrophic decisions.

Therefore, real-time decision making processes must be supported by sensory 
information and knowledge continuously derived from all cognitive processes within 
the system simultaneously, in a collectively uniform and cooperative model. 
Additionally, transformation from information to knowledge within an AIC system 
requires new, revolutionary changes to the way information is represented, fused, 
refined, presented, and disseminated. Like the human brain, the cognitive processes 
within an AIC must form a cognitive ecosystem that allows self-learning, self- 
assessment, self-healing and sharing of information across its cognitive sub- processes, 
such that information is robustly learned and rapidly reusable. This AIC ecosystem 
involves inductive, deductive, experimental, and abductive thinking in order to pro-
vide a complete Data-to-Information-to-Knowledge process explained in detail 
throughout the rest of the book. At a high-level, we are applying the theory of AIC and 
applying the constructs to the development of a humanistic analogous Synthetic 
Evolving Life Form (SELF). A SELF human brain analogy provides two- main layers 
of processing, a Deductive Process and an Investigative Process. The Deductive 
Process is utilized for assembling information that has been previously learned and 
stored in memories (deductive and inductive logic), whereas the Investigative 
Process looks for patterns and associations that have not been seen before (abduc-
tive and experimental logic). Figure 2.1 illustrates the differences between deductive, 
inductive, abductive, and experimental inferences.

2 The Information Continuum
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2.3  Discussion

If we desire to create an Artificial Cognitive Architecture that encompasses the AIC 
discussed above, in order to create a system that can truly think, reason, learn, utiliz-
ing the inferences shown in Fig. 2.1, we must consider the overall implications of 
such a system, including the psychological impacts and considerations both for 
humans and for the system itself. The next chapter will discuss the Psychology of 
Artificial Intelligence.Reference
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Fig. 2.1 Differences between logical inference systems
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                    The preceding chapters focused upon introducing the characteristics within an 
Information Continuum and how they relate to a fully autonomous, learning, 
reasoning system (analogous to a synthetic brain), and how a SELF must possess 
constructs in its hardware and software to mimic humanistic processes and subsys-
tems . This chapter will focus more upon designing and implementing these human-
istic structures by understanding how they must interact and cooperate in order to 
form a comprehensive learning system. We employ concepts adapted from the 
domain of cognitive psychology as inputs into the formation of these interactive 
humanistic structures, sub-structures, and components. In short, Psychology helps 
us understand how these structures function within the human brain followed by 
translation efforts to design and implement these dynamic functions within an 
analogous synthetic brain. Hence, the foundational building blocks likened to 
“synthetic consciousness”, comprised of cognition, intuition, and other capabilities 
that humans possess. 

 Creating a synthetic consciousness has signifi cant technical challenges which 
are addressed throughout the book; however, this book will also explore adjacent 
cultural challenges which also need to be addressed. To create a complete artifi cial 
intelligent system, we need to understand how such a system would be received and 
perceived by people and how we expect any type of artifi cially intelligent system to 
react to and perceive people. 

 Therefore, here we explore the concept of “Artifi cial Psychology” where we will 
detail what it means to have a SELF resemble human intelligence and when and 
why the “Psyche” of the Artifi cial Intelligence system matters. 

3.1     Artifi cial Psychology 

 Psychology is the study of mental processes and behavior of individuals. Artifi cial 
Psychology is then the study of the synthesized mental processes of the SELF 
similar to humans and the artifi cial cognitive processes required for an artifi cially 

    Chapter 3   
 The Psychology of Artifi cial Intelligence 
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intelligent entity to be intelligent, learning, autonomous and self-developing. 
In psychology there are several specialties or focused areas of study. Take for example 
cognitive psychology that studies how the brain thinks and works. This includes 
learning, memory, perception, language, logic. Developmental psychology considers 
the developmental stages in which an individual develops and what is appropriate to 
consider normal/standard for a human based upon these stages of development. 
Sports psychology considers mechanisms specifi cally to affect individual perfor-
mance and how performance affects the individual. Hence, Artifi cial Psychology, in 
the context of this book, contains the artifi cial mental process considered necessary 
to create intelligent, autonomous, self-evolving, artifi cially cognitive systems. 

 Artifi cial Psychology is a theoretical discipline fi rst proposed by Dan Curtis in 
1963. This theory states that Artifi cial Intelligence approaches the complexity level 
of human intelligence when the artifi cially intelligent system meets three very 
important conditions:

•    Condition 1: The artifi cially intelligent system makes all of its decisions autono-
mously (without supervision or human intervention) and is capable of making 
decisions based on information that is (1) New, (2) Abstract, and (3) Incomplete.  

•   Condition 2: The artifi cially intelligent system is capable of reprogramming 
itself (evolving), based on new information and is capable of resolving its own 
programming confl icts, even in the presence of incomplete information. 1   

•   Condition 3: Conditions 1 and 2 are met in situations that were not part of the 
original operational system (part of the original programming).    

 Current engineering, bioinformatics, and computational science have evolved to 
a point where scalable processing power and real-time processing can, in parallel, 
perform operations to levels where we believe that not only the three conditions can 
be met, but that the possibility exists that an artifi cially intelligent system could 
have the ability to reach conclusions based upon real-time engineering which can 
aptly process newly acquired information, can infer upon it from learned and stored 
information in the form of synthetic memories. Therefore, we believe that enough 
criteria may exist, giving signifi cant credence to the growing fi eld of Artifi cial 
Psychology. This may require new theories and research to be explored in industry 
and at institutions of higher learning, specifi cally for addressing the rapidly expand-
ing need for general human support systems to domains and environments where 
humans are still signifi cantly challenged (e.g. space, deep sea exploration). 

 Artifi cial psychology, by defi nition, is required when the ability of the artifi cially 
intelligent system to reprogram, or self-evolve, through a process of self-analysis 
and decision, and based upon the comprehensive information available to the system, 
in real-time, does not and cannot provide the required mechanisms to process and 
resolve internal inconsistencies within the system. 

 The current theory of Artifi cial Psychology does not address the specifi cs of 
what those levels may be, but only that the level is suffi ciently complex that the 

1   This means that the SELF autonomously makes value-based decisions, referring to values that the 
artifi cially intelligent system has created for itself. 
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intelligence cannot, at this time, simply be recorded by a software developer. 
Additionally, Artifi cial Psychology does not address the question of artifi cial 
consciousness.  

3.2     Artifi cial Cognition: What Does It Mean 
to Be Cognitive? 

 Cognition is all about thinking. According to Ashcraft [ 7 ], cognition is the collection 
of mental processes and activities used in perceiving, remembering, thinking, and 
understanding, as well as the act of using those processes. Adding the term artifi cial 
identifi es that the nonhuman synthetic system is a representation of the living intel-
ligent system. Artifi cial Cognition is how the Artifi cial Intelligent (AI) machine 
(SELF) learns, integrates, recalls, ingests, processes, and uses the information that 
it receives. The challenges to create a SELF which is as complex as human thinking 
is driving towards Artifi cial Cognitive Science in order to achieve a better under-
standing of human processes and developing the truly intelligent machine [ 7 ,  84 ].  

3.3     Artifi cial Intuition: What Does It Mean to Be Intuitive? 

 The word “intuitive” derives from contemplate in Middle English around 1400. 
Hence, the faculty or process by which humans consider previous information to 
make a judgment/decision about a given thought, action, or activity. In layman’s 
terms, what does it mean to trust your gut? According to Anderson, 2  intuition is 
another way of problem solving that is not the same as logic [ 6 ].

   Artifi cial intuition is not a high-level Logic model so there is no model to get confused 
by the illogical Bizarreness of the world. Systems with intuition then can operate without 
getting confused with things such as constantly changing conditions, paradoxes, ambiguity, 
and misinformation.  

   Anderson also states that this does not mean that suffi cient misinformation won’t 
lead such a system to make incorrect predictions, but it means that the system does 
not require all information to be correct in order to operate. Intuition is fallible, and 
occasional misinformation makes failure slightly more likely. The system can keep 
multiple sets of information active in parallel (some more correct than others) and 
in the end, more often than not, the information that is most likely to be correct 
wins. This happens in humans, and will happen in Artifi cial Intuition based systems. 
The goal of the SELF is to provide the cognitive intuition required to deal with the 
world in a real-time, autonomous fashion. In subsequent chapters, a Dialectic 
Argument Structure is proposed, which is a methodology constructed for the SELF 

2   http://artifi cial-intuition.com/intuition.html 
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to deal with confl icting and ambiguous information and will allow the system to 
deal with our paradoxical and ever changing world. Other examples include, 
IntuView, an Israeli high-tech fi rm advertises the development of “artifi cial intuition” 
software that can scan large batches of documents in Arabic and other languages. 3  
The espoused tool’s capability “instantly assesses any Arabic-language document, 
determines whether it contains content of a terrorist nature or of intelligence value, 
provides a fi rst-tier Intelligence Analysis Report of the main requirement- relevant 
elements in the document.” This tool, like many others like it, provides semantic 
analysis and coded rules for the assessment. However, the human belief structure and 
memories comprise additional constructs of emotions linked to information which are 
included in the processes of intuition and human thought processes in general. 
Therefore, the subsequent chapter explores the effects of emotion and the develop-
ment of synthetic emotion towards the end of achieving synthetic intuition.  

3.4     Human Versus Machine Emotions 

 According to Minsky 4 : Human emotions are still about thinking:

   The main theory is that emotions are nothing special. Each emotional state is a different 
style of thinking. So it’s not a general theory of emotions, because the main idea is that each 
of the major emotions is quite different. They have different management organizations for 
how you are thinking you will proceed.  

   Specifi cally, emotions can be thought of in terms of arousal states. Generally, 
when a person is calm and quiet they are more likely to be able absorb content and 
listen, learn, or problem solve. Contrary to being calm, an excited emotional state 
would make it less likely to be able to perform complex problem solving tasks 
[ 78 ]. With humans, that is why it is generally recommended to employ a pre-
defi ned safety plan or practice evacuations. At the time of crisis, the brain doesn’t 
have to perform as much problem solving, but instead follows a pre thought out 
plan. The instant a car accident occurs, the body is fl ushed with adrenaline, heart 
begins racing, and hands begin shaking. This would likely not be the right time to 
work out a calculus problem. Often, emotional states can infl uence our perception. 
A clinically depressed person would not likely perceive positive outcome of a 
given situation. 

 Similarly, for an artifi cially intelligent entity, emotions are states of being. If the 
system becomes overloaded, would it be likely to have the ability to determine what 
resources to allocate in order to return to the proper homeostatic state or a state of 
optimal performance? However, if enough indicators are sensed to arouse enough 
internal system urgency, could a system mediator or risk mitigation component keep 
operations performing optimally? Analogously, when an injury occurs or a virus is 
discovered within the human body, the immune system applies and/or moves resources 

3   http://www.wired.com/dangerroom/2008/10/tech-fi rms-face/ 
4   http://www.aaai.org/aitopics/pmwiki/pmwiki.php/AITopics/Emotion 
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to fi ght the infection and/or heal a wound. The types of evolving system we are pro-
posing would use similar constructs. An application of this type of system and how it 
might operate could be realized as part of monitoring data sources for imminent 
threats. Take terrorist threats for example. If an autonomous information processing 
system crosses a certain threshold of perception while monitoring a signifi cant vol-
ume of information to conclude an attack might be imminent, the system could 
increase resources to determine the best plan of action. Just as the human level of 
arousal may contribute to what decisions we make. A minor chest pain from a strained 
muscle may result in taking an anti-infl ammatory or a severe chest pain may cause us 
to employ rapid and decisive resources to call a paramedic [ 84 ]. 

3.4.1     Basic Emotions 

 In his book on Emotion and Intuition, Bolte concluded the following: [ 21 ]:

   We investigated effects of emotional states on the ability to make intuitive judgments about 
the semantic coherence of word triads… We conclude that positive mood potentiates spread 
of activation to weak or remote associates in memory, thereby improving intuitive coher-
ence judgments. By contrast, negative mood appears to restrict spread of activation to close 
associates and dominant word meanings, thus impairing intuitive coherence judgments.  

   Bolte found a clear relationship between emotions and the ability to have or 
exhibit intuition. This drives us to a model of basic emotions that allow a system to 
channel resources and fi nd solutions, based on emotional responses to its interaction 
with its environment. For the purposes of this book basic emotions are emotions that 
are in simplest forms of arousal states or states of being (e.g. calm, alerted, stress, 
terror or trauma). 

 The debate continues over the ability to artifi cially create human like emotions 
within systems. Consider Maslow’s well-known hierarchy of basic human needs, 
which links human emotions to human needs and defi nes human characteristics 
when needs are met or not. An example of a Maslow basic human need is belonging 
or friendship. When humans meet this need they feel valued, loved and a sense of 
belonging. A general human perception might be that this would be unnecessary for 
a machine. However, if a system was given constraints would those constraints then 
effectively operate as needs? If the goal was to meet the constraint or satisfy the 
constraint; would the SELF begin to feel? Would the machine reach a level of 
arousal based on a need or constraint? 

 Given the studies sited, can we give a system a sense of intuition without emotion? 
If we can, could it then exceed human performance on tasks that emotions generally 
infl uence? How separable is intuition and emotion? The comprehensive question 
being asked is: can a system be developed which can perform humanistic intuitive 
predictions or problem solving without using states of arousal. We believe the 
emphatic answer to this question is no. Later chapters in this book describe the 
concepts and implementation strategies of an autonomic nervous system and related 
arousal states within to provide “emotion-like” features to interact with external 
environments.   

3.4  Human Versus Machine Emotions
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3.5     Human Perception of Artifi cial Intelligence 

 According to Nass and Moon [ 176 ], humans mindlessly apply social rules and 
expectations to computers. In their work on human perception of Artifi cial 
Intelligence, they conducted three experiments to illustrate human tendencies to 
consider when discussing human perceptions of Artifi cial Life Forms. Their fi rst 
experiment attempted to show that humans overuse social categories by applying 
gender stereotypes and ethnically identifying with computers. Their second experi-
ment illustrated that people engaged in over-learned social behaviors such as polite-
ness and reciprocity when interacting with computers. Thirdly they conducted an 
experiment to illustrate human’s premature cognitive commitments by how humans 
respond to labeling. Thus human tendencies are important when considering human- 
Artifi cial Intelligence interaction. 

 Harmon [ 129 ] shows humans paired characteristics with a computer that may 
have been affected by gender and embodiment. Harmon describes signifi cant cor-
relation between gender, basic human characteristics, emotion, and computers. 
Specifi cally:

•    Passive and Likeable for the male  
•   Understandable and Pleasant for both male and female  
•   Reliable and Likeable for male.    

 Harmon [ 129 ] found that both computer terminal and humanoid robot had sig-
nifi cant correlation for understanding/pleasant and friendly/optimistic characteris-
tics assigned by humans. Yet only the computer terminal showed signifi cant 
correlation in regard to understandable/capable, pleasant/reliable, and helpful/reli-
able. Thus, concluding that humans were willing to assign human characteristics to 
computers. 

 Considering the research described in this chapter one can conclude that how 
Artifi cial Intelligence is presented to humans will affect how it is perceived. As an 
example, when any inanimate object becomes embedded with even a small amount 
of AI and then that system is given a name to embody it with human characteristics, 
or when a navigation system in a car is presented to a user with different types of 
voices the systems take on a whole different meaning. Clearly there are many vari-
ables infl uencing human perception of computers and continued research is required 
to understand interactive perceptions with AI systems to optimally benefi t humans.  

3.6     Human Acceptance of Artifi cial Intelligence 

 It seems that the non-intelligent robotics have had both a positive and negative 
reception from humans [ 129 ]. In varying degrees, humans already accept what is 
perceived to be artifi cial intelligence today: smart home software which secures, 
alerts, and automates the car that cools, heats, and can start itself. These are a few of 
many existing examples. On one hand technology helps humans function more 
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effi ciently: help to detect threats to national security, or virtually train our forces, 
and help solve other complex problems. On the other hand technology can take over 
human functions. Consider the effects of robotics embedded in the auto industry. 
Machines perform the work that humans used to do. Hence, because of a machine’s 
ability to out-perform humans in certain conditions, we must consider the research 
required to set thresholds of human cultural acceptability. As with any new technol-
ogy, there can be varying degrees of usage and learning curves. Human interaction 
with a SELF would be similar. The internet and cell phone technology has also 
clearly exposed generational differences in use and acceptance. Thus, it may take 
time for humans to accept a SELF’s on a daily basis. 

 Historically, there has been continued concern with technologies and what they 
mean for human kind, whether the discussion involves cloning, public access to 
personally identifi able information, or embryonic stem cell use. Hence, in many sci-
entifi c areas we have continuously evolved ethical guidelines for science to follow as 
technology has evolved. Therefore, ethical research will continue to be required as 
self-evolving concepts and cognitive technologies become more commonplace.  

3.7     Artifi cial Intelligence Perception Design 

 It is generally accepted that humans are emotional beings and inanimate and animate 
computer systems are not, even artifi cially intelligent ones. Hence, let’s consider 
human emotional intelligence. According to Mayer, Salovey, and Caruso [ 170 ], 
Emotional Intelligence (EI) entails the capacity of humans to reason about their 
emotions and emotions required to enhance thinking. They reasoned that Emotional 
Intelligence includes the abilities to:

•    Perceive emotions,  
•   Access their emotions,  
•   Generate emotional knowledge,  
•   Regulate their emotions by refl ecting on them,  
•   Use their emotions and emotional memories to promote emotional and intellectual 

growth.    

 In short, Emotional Intelligence allows humans to operate on and with emotional 
information 5  gathered from interactions with their environment and other people. 

 Therefore, the hypothesis of this book proposes that in order for artifi cially intel-
ligent systems to comprehensively interface with humans in a human qualitative 
manner, the observations and perceptions of these systems must be driven by 
humanistic cognitive emotional growth architectures which can provide a founda-
tion for qualitative interaction. Additionally, we propose that the architectures will be 
signifi cantly infl uenced by the perception humans have of these systems as described 

5   Emotional information concerns the meaning of emotions, emotional patters and sequences, and 
the appraisals of relationships they refl ect [ 170 ]. 
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in the previous chapter. Hence, this allows us to extrapolate that a SELF should 
require parts of and architecture to address some levels of social intelligence. This 
will likely effect how humans perceive a SELF as well. Social intelligence as well 
as many other cognitive and psychological aspects of humanity will most logically 
have relevance in the modeling and development of cognitive architectures of one 
SELF (e.g. depression, the group context, peer pressure, sense of security) 

 Chai [ 31 ] describes a project in which the objective was:

   …to build a software module for the analysis of cultural differences. The module is designed 
for incorporation into a decision-support environment in which real world actors with 
whom the user is interacting are “avatarized” into agents whose movements appear within 
a graphical user interface. The purpose of the module is to help members of multinational 
coalitions operate better.  

   Sun-Ki Chai [ 31 ] goes on to say:

   For the immediate future, I would argue that artifi cial intelligence needs social theory as 
much or more than social theory needs artifi cial intelligence . 

   After giving thought to emotional intelligence, social intelligence, roles, and 
interfacing, can these lead to modeling and implementation of artifi cial personality? 
Can there be artifi cially designed traits, developed from a set of interoperability 
rules, which allow for internal preferences and behavior so SELFs can interoperate 
together as an ecosystem? We will continue to explore these concepts throughout the 
book as we describe the proposed mechanisms and integrated cognitive psychology 
required to build, test, and collaborate.  

3.8     The Psychology of Human-Robot Collaboration 

 Historically, the purpose of robotics has been to perform some type of services on 
behalf of humans. Hence, to help defi ne optimal human-robot-SELF interactions, 
we must look to the characteristics of human interactive behavior. Human collabo-
ration, with other humans, fundamentally comprises trust and knowledge of anoth-
er’s abilities and limitations. In short, it’s not possible to have an interaction between 
two human entities without there being some level of expectation of the interaction 
(discussed in more detail in Chap.   6    ) [ 200 ]. Let’s consider a simpler example of 
human interaction with animals. Humans, for example, cannot completely predict 
an animal’s behavior. However, it is still important to know how the animal will 
typically behave in order to predict and plan for the proper interactive response 
(e.g. give food, play, run to safety). Again, it comes down to human expectations. 
Understanding the animal’s abilities and limitations will reduce frustrations of try-
ing to meet a goal (e.g. taming a lion). Knowing the abilities of the animal changes 
our expectations. Bulldogs can’t swim because of the shape of their nose, similar for 
dogs with large chest. Humans can accommodate for these limitations when they 
know about them. Understanding the expectations, abilities, and limitations of a 
SELF as well as the cognitively designed understanding of SELF expectations, 
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abilities, and limitations of humans, is vital to effi cient, and useful collaboration. 
Collaboration is much more than a mere working relationship. It is both a process 
and an outcome. The process is a coming together to work on a common problem 
while understanding that each other has infl uence on the other. The collaborative 
outcome is a solution where all parties can agree on the fi nal solution [ 147 ]. 
Typically collaboration happens because an individual cannot accomplish the same 
goal alone. It is more than an association relationship it is more like a partnership. 

 So what is required for humans and robots, machines, to have a partnership? 
Likely, many of the same things as previously discussed; a sense of predictability, 
safety, reliability, trust, communication, knowledge, understanding, and accommo-
dation just to name a few. We propose that everything collaborating with humans 
does not necessarily need to be human-like but as a minimum a need for some 
essential characteristics. Hence, it follows that some of the useful characteristics 
might be the ones that keep humans committed to the collaboration. Who will tolerate 
the constant attack of a lion, or the abusive coworker, or a laptop that continues to 
freeze in the middle of writing documents? Each will eventually be regarded as 
untrustworthy and would most likely be replaced. 

 Several research systems exist which are important to consider when thinking of 
the psychology of human-SELF collaboration. In their work on intelligent mecha-
tronics, Harashima and Suzuki [ 128 ,  201 ] concluded that communicative artifi cial 
intelligence models must be equipped with mathematical models that touch on the-
ory of mind, mind reading, and social common sense. This level of machine must 
also include eye contact robots and attempt to communicate intuitively and instan-
taneously. Such mechatronic systems have been able to perform as Ball Room 
dance partners and therapy Seals. There are many mechatronics designed to aug-
ment and/or enhance human skill. One example is a machine that assists as a scrub-
nurse. Just the thought of a SELF assisting in any surgery implies a huge amount of 
trust particularly if ultimately allowed to perform surgery autonomously. Suzuki, 
Pan, Harashima, and Furuta [ 201 ] stated: “…knowledge and human psychology 
cannot be written suffi ciently by computer algorithms; hence, the present intelligent 
mechatronics cannot understand the human perfectly” .  Later in the book we discuss 
the concepts and challenges with training a synthetically engineered evolving life 
form and vice versa using the process Human Mentored Software (HMS) [ 86 ], and 
Human Interaction Learning (HIL) [ 85 ]. 

 Current human-robot interaction technology and design has developed from 
master–slave type interactions toward more collaborative. Karami, Jeanpierre, and 
Mouaddib, [ 147 ] described a model where the robot is able to consider human 
intentions and operate without communication. Karami, et al., also discussed how 
robots can build beliefs about human intentions by observing, collecting, and per-
ceiving human behavior. Although the experiment shown was a seemingly simple task 
of moving objects, the results showed further promise for human-robot collabora-
tion more advanced than in the previous master–slave paradigm. 

 Research shows that humans adapt to how they respond to robots over time [ 122 ]. 
Initially, humans tend to use simplistic communications with robots until they learn 
how the robots adapt to higher order types of communication. In later work, they 
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investigated human robot interaction, illustrating how language and gestures help 
humans and robots collaborate during spatial maneuvering [ 121 ]. They concluded 
that over time humans used more complex language and gestures as they learned 
that the robot could successfully respond to them. Giving credence to the hypoth-
esis that as humans and robots interact, increased understanding of constraint and 
limitation characteristics grows and directly affects qualitative collaboration. 

 Trends in human-robot interaction [ 127 ] show that several characteristics 
increase human trust in robots, among which reliability is a major factor. Also infl u-
encing trust is type, size, proximity, and behavior of the robot. Later research indi-
cates that human characteristics such as ability and personality, and environmental 
characteristics such as task and team, along with robot performance characteristics/
attributes effect training and design implications, thus, affecting human-robot col-
laborative team trust [ 19 ]. 

 Since existing bodies of research indicate clearly that trust and clear expectations 
are important in human robot collaboration, signifi cant challenges lay ahead for 
human adaptation to recent increases in capabilities of more highly autonomous 
cognitive systems. Similar to human-human or human creature relationships, little 
collaboration or cooperation will occur until understanding, expectations, and/or 
predictability become well defi ned in context of environment, enhanced trust, and 
collaboration.  

3.9     Discussion 

 We have discussed the human desire for a SELF and the psychology involved in 
dealing with such a life form as part of our everyday lives. The rest of the book 
is dedicated to describing how to create an Artifi cial Cognitive Architecture that 
has the capabilities to learn, think, reason, infer, remember, and make decisions like 
humans.                            
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In order for a SELF to function autonomously, and have the abilities to learn, reason, 
infer, evolve, perform self-assessment and self-actuation, we propose a cognitive 
framework similar to the human brain. What we describe in this chapter is an 
Artificial Cognitive Neural Framework (ACNF) that provides the ability to organize 
information semantically into meaningful fuzzy concepts and information frag-
ments that create cognitive hypotheses as part of a SELF’s topology [129], similar 
to human processing. This approach addresses the problems of autonomous infor-
mation processing by accepting that the system must purposefully communicate 
concepts fuzzily within its processing system, often inconsistently, in order to adapt 
to a changing real-world, real-time environment. Additionally, we describe a pro-
cessing framework that allows a SELF to deal with real-time information environ-
ments, including heterogeneous types of fuzzy, noisy, and obfuscated data from a 
variety of sources with the objective of improving actionable decisions using 
Recombinant kNowledge Assimilation (RNA) processing [70, 71] integrated within 
an ACNF to recombine and assimilate knowledge based upon human cognitive 
 processes. The cognitive processes are formulated and embedded in a neural network 
of genetic algorithms and stochastic decision making with the goal of recombinantly 
minimizing ambiguity and maximizing clarity while simultaneously achieving a 
desired result [58, 95].

4.1  The Artificial Cognitive Neural Framework  
(ACNF) Architecture

The Artificial Cognitive Neural Framework (ACNF) processing infrastructure is a 
hybrid computing architecture that utilizes genetic, neural-network, fuzzy, and 
complex system components, that allow integration of diverse information sources, 
associated events, and iterative learning combined with artificial human-like 
memory systems to make observations, process information, make inferences, and 
ultimately, decisions. Within the ACNF, Continuously Recombinant Neural Fiber 
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Networks are utilized to map complex memory and learning patterns as the system 
learns and adapts [20]. The entire system “lives” and communicates via software 
agents called Cognitrons, which are cognitive intelligent information software 
perceiving and processing agents that have the ability to mimic human perception 
and reasoning by understanding how to create and develop hypotheses [57, 214, 215]. 
The Cognitron comprises the knowledge and context of numerous perceptrons 
which intelligently collect and carry individual grains of perception within the ACNF. 
The architecture provides a collection of constraints, building blocks, design elements 
and rules for composing the cognitive aspect of a SELF. Figure 4.1 illustrates the 
ACNF architecture.

The three main domains of the ACNF are:

 1. The Cognitive System Components: this consists of the Artificial Cognition, 
Learning Algorithms, Artificial Neural Emotions, Artificial Consciousness, and 
Cognitrons that make up the consciousness structures. These are responsible for 
the cognitive functionality of perception, consciousness, emotions, information 
processing, and other cognitive functions within the SELF ACNF.

 2. The Mediator (the Artificial Prefrontal Cortex): The Mediator takes information 
from the Cognitrons, processed through the Artificial Cognition processes, and 
forms coalitions of perceptrons that are used to update the short-term, long- term, 
and emotional memories.
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 3. The Memory System: the Memory System consists of the different memories 
(sensory, short-term, long-term, and emotional), and Memory Integration func-
tionality. Here, memories are integrated together and information that is available 
within the ACNF memories (what the system has learned and “knows”) and 
continually broadcasts it to the conscious perceptrons that form the cognitive 
center of the SELF. It also integrates information into current short-term memory 
to provide Integrated Knowledge (world data) to the Cognitrons to analyze 
incoming sensory information.

4.1.1  Cognitrons

The Cognitrons provide the ACNF with the ability to mimic human reasoning 
in processing information and developing knowledge. This intelligence takes the 
form of answering questions and explaining situations that the ACNF encounters 
[70, 77, 142]. These are persistent software components that perceive, reason, act, 
and communicate. Cognitrons are software structures that provide the following 
abilities to the ACNF:

• Allows the ACNF to act on its own behalf
• Allows autonomous reasoning, control, and analysis
• Allows the ACNF to filter information and to communicate and collaborate with 

other Cognitrons.
• Allows autonomous control to find and fix problems within the ACNF
• Allows pattern recognition and classifications
• Allows the ACNF to predict situations and recommend actions, providing auto-

mated complex procedures

Figure 4.2 illustrates another view or slice through the ACNF consciousness 
framework. In Fig. 4.2 we provide the ACNF Cognitron Ontology [191, 203]. This 
Ontology illustrates how the Cognitrons are intended to function within the ACNF.

4.2  The Artificial Prefrontal Cortex (The Mediator)

As described above, specialized Cognitrons are autonomous “Conscious” software 
agents that range in functionality and are situated in the processing environment. 
They sense the environment via fine-grained perceiving units, known as percep-
trons, and act on them over time, in pursuit of an agenda, based on their evolving 
constraints. As they evolve it is possible for them to change what they sense at a 
later time. These “conscious” agents are also “cognitive” agents, in that they are 
equipped with constructs for concept formation, consciousness, basic emotions, and 
short & long-term memories [108]. The long-term memories provide identification, 
recognition and categorization functions, as well as identification of feelings [218]. 
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The short-term memories provide preconscious buffers as a workspace for internal 
activities. A transient episodic memory is also provided as a content-addressable 
associative memory with a moderately fast decay rate.

This provides the architectural framework for an Artificial Prefrontal Cortex 
(APC), which provides cognitive intelligence for AI processing systems and allows 
for rapid analysis, reasoning, and reporting capabilities. The APC facilitates infor-
mation, intelligence, and memory integration and allows faster accommodation and 
delivery of knowledge and knowledge characteristics across the system [156].

4.2.1  Artificial Prefrontal Cortex and Cognitive Control

The prefrontal cortex has long been suspected to play an important role in cognitive 
control, in the ability to orchestrate thought and action in accordance with internal 
goals. Cognitive control stems from the active maintenance of patterns of activity in 
the prefrontal cortex that represent goals and the means to achieve them [157, 158]. 
They provide bias signals to other cognitive structures whose net effect is to guide 
the flow of activity along neural pathways that establish the proper mappings between 
inputs, internal states, and outputs needed to perform a given task. The Prefrontal 
Cortex is integral to planning complex cognitive behaviors, personality expression, 

Cognitron

Inferences

Have

Memories

Affect

Characteris�cs

Have

Capabili�es

Have Roles

Have

Resources

Inter-agent
Communica�on

Have

Behaviors

Evolu�on
History

Events

Ac�ons

States

Incidents

Transi�ons Decisions

Constraints

Goals

Systems

Time
Periods

Event
Proper�es

Affect

Has anIs part of

Affect

Reside in

Have

Make

Affect

perform

Are

Have

Are

Are

Are

Affect

Affect

Instance of

Alter

Operate for

Are defined for

Are part of

Are based on

Define

Affect

Define

Affect

Have

Have

Exist in

Are defined for

Affect

Affect

Affect

Emo�onsAffect

Have

Coali�onsForms

Fig. 4.2 The Cognitron conceptual ontology

4 Cognitive Intelligence and the Brain: Synthesizing Human Brain Functions



www.manaraa.com

31

decision making and moderating correct social behavior [132, 218] (See Fig. 4.3). 
The basic activity of this brain region is considered to be orchestration of thoughts 
and actions in accordance with internal goals [172].

Here we describe and artificial structure within the architecture to provide an 
APC humanistic functionality and identify the structure, context, artificial feelings, 
emotions, and their roles within the SELF for performing real-world tasks. These 
SELF Cognitrons would be actively involved in every instance of action selection and 
in each learning event [177]. The pervasive, central role that feelings and emotions play 
in our proposed control structure of these conscious software agents mimics the roles 
they play in human cognition, and over time, give rise to clarifying hypotheses about 
human decision-making and several forms of human learning [93, 94].

4.2.2  Artificial Prefrontal Cortex Framework

Executive functions carried out by an artificial prefrontal cortex region are repre-
sented as core management functions related to overarching abilities that can man-
age and differentiate among conflicting thoughts, determine good and bad behavior, 
better and best, same and different, future consequences of current activities, working 
toward a defined goal, prediction of outcomes, expectation based on actions, and 
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social “control” [99]. The prefrontal cortex is of significant importance when top-down 
processing is needed. Top-down processing by definition, is when a specific given 
or requested behavior is guided by internal states or intentions otherwise known as 
the cognitive concept of “mindfulness [168]:”

• Mindfulness: an awareness that lets us see things as they truly are without distortion 
or judgment, giving the most insightful explanation of how mindfulness can 
change not only our lives, but the very structure of our brains.

In order for our SELF to be autonomous, we propose to give it “executive func-
tions” abilities. One of the cognitive concepts that employed for an autonomous 
system is the ability to perform top-down processing. To develop an understanding 
of a given mission or task at hand, and from this define an internal perception of 
needed goals/gaps along with prediction of possible outcomes, and subsequently 
utilize this knowledge to define the system processing behaviors needed to ultimately 
meet that mission or task goal. Executive management of autonomous system pro-
cesses involves planning, monitoring, evaluating and revising the system’s own cogni-
tive processes and discrete outcomes. Strategic knowledge involves knowing what 
tasks or operations to perform (factual or declarative knowledge), knowing when and 
why to perform the tasks or operations (conditional or contextual knowledge) and 
knowing how to perform them (procedural or methodological knowledge). Both exec-
utive management and strategic knowledge capabilities are required for the system to 
autonomously self-regulate its own thinking and learning [46].

Hence, we propose a model for an Artificial Prefrontal Cortex sub-framework as 
part of our overall Artificial Cognitive Neural Framework (ACNF) and discuss the 
utilization of the Hidden Markov Model and related fuzzy possibilistic logic to drive 
the system between cognitive states.

4.2.3  Artificial Prefrontal Cortex Architecture

Architectural components within the Artificial Prefrontal Cortex provide the gover-
nance capabilities that enable definition and enforcement of cognitive policies gov-
erning the content and usage of cognitive maps and topical maps. Together these 
maps define the knowledge and context relationships processed by the Cognitron 
framework within a SELF. The logical architecture flow for the Artificial Prefrontal 
Cortex (APC) is shown in Fig. 4.4.

To understand the cognitive interactions that occur within an Artificial Prefrontal 
Cortex, a model was built to drive the Cognitron framework that provides linkage 
between the major cognitive states within the cortex [78, 79]. Figure 4.5 illustrates this 
cognitive processing model, rooted in foundations based on upon Artificial Intelligence 
interpretations of Dr. Peter Levine’s Autonomic Nervous System States [163].

Detecting cognitive process information within an ACNF begins with sensors 
and sensory perception techniques that capture internal and external information 
about the system’s physical or cognitive state or behavior. The information is gath-
ered and interpreted by Cognitrons similar to how humans utilize cues to perceive 
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cognitive states or emotions in others. The Artificial Prefrontal Cortex (APC) 
provides possibilistic inferences for a system to transfer between cognitive states. 
For simplicity, the APC shown in Fig. 4.5 illustrates only three cognitive states. 
Extending the model to include additional states is simply a function of possibilistic 
state transitions. The objective operation of an APC is to rapidly transition between 
cognitive states at any instant, and transition between states based upon possibilis-
tics. These possibilistic parameters evolve over time, driven by learning algorithms 
expressed in later chapters and continuously reevaluated and affected both by 
normal and emotional memories [171].
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Cognitive state transition related conditional possibilistics provide the APC with 
abilities to make executive-level plans and processing to move between cognitive 
states, each of which has its own set of priorities, goals, and motivations. An APC helps 
meet the objective to create an internal environment of self-evolving autonomy that 
could be used in a variety of applications. Humanity continues to desire systems that 
can explore regions of our earth and beyond where environments are dangerous and 
prohibitive. Many of these austere locations are unknown quantities, for which no 
astrophysicist or computer scientist could ever develop enough a priori planning or 
source code. Therefore, these types of systems must have enough a priori knowledge 
as we can give them, along with the ability to discern and infer how to land on a distant 
planet autonomously. Many existing system, like Unmanned Aerial Vehicles, intelli-
gence information processing systems, cyber monitoring and security systems, all con-
tinue to have the “human-in-the-loop” making ultimate decisions, but are making 
strides toward autonomous operations every day. However, these systems are all devel-
oped with the goal of thinking all the possible causalities processed by the infamous IF, 
Then statements that the best software engineers can devise to prepare each of these 
systems for what it might someday encounter. Therefore, in order to evolve beyond this 
paradigm, we propose a system employ an APC comprising the following capabilities, 
process, and execution behaviors similar to a human prefrontal cortex:

Cue Familiarity: cue familiarity is the ability of the system to evaluate its ability to 
answer a question before trying to answer it [218]. In cue familiarity, the question 
(cue) and not the actual memory (target) become crucial for making cognitive judg-
ments. This implies that judgments regarding cognitive processing and decisions 
would be based on the system’s level of familiarity with the information provided in 
the cue. This executive-level, top-down cognitive judgment requires APC abilities 
that allow a SELF to judge whether the answer to a question is known, or whether 
the system is already familiar with the topic or mission, allowing the system to 
judge unfamiliar terms or conditions.

Cognitive Accessibility: suggests that a system’s memory will be more accurate 
and more rapidly available for use when the ease of cognitive processing (accessi-
bility) is correlated with emotional memories. For an APC, we propose that the 
quality of information retrieval depends on the system’s density of knowledge on 
the topic or subject or individual elements of informational content about a topic. 
Individual elements of topical information can differ in strength while the speed of 
access is tied to both density of knowledge and level of emotional memory when a 
system responds to the information cues.

Cognitive Competition: comprises three principles:

• An AI cognitive processing system (the brain) is activated by a variety of inputs 
(sensors), perceiving text, audio, and visual pictures and video. Hence, different 
types of information are sensed simultaneously.

• Competition develops over time as simultaneous data is processed within the 
multiple cognitive processing subsystems and is adjudicated by the intelligent 
software agents; Cognitrons.

• Competition is assessed utilizing top-down neural priming.
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Cognitive Interaction: Combines cue familiarity and cognitive accessibility.  
In cognitive interaction, once cue familiarity fails to provide enough information to 
make cognitive inferences, cognitive accessibility accesses extended memories and 
may employ stored emotional memory cues to access additional information to 
attempt to make the required cognitive inferences. This may result in slower 
response time than with cue familiarity alone. Even in humans reaction times can be 
slower when the situation requires additional learning [227].

4.2.4  Artificial Prefrontal Cortex Processing

In order for an APC to process the challenges of cognitive competition as described 
above, processing constructs must be in place to allow cognitive inferences to be 
made, inferences and decisions learned, and simultaneously comply with an overall 
sense of priorities, goals, and needs. The following constructs are proposed to allow 
a viable APC to be constructed. The first construct employed is a topic map, specifi-
cally, a Fuzzy, Self-Evolving, Contextual topical map (FUSE-CTX). A topic map is 
an organized hierarchy of information, which crosses a threshold of similarity with 
other information to form a name comprising the general similarity.

A FUSE-CTX topical map is a general cognitive method for visualizing underly-
ing analysis, and providing context for inferencing complex, multi-dimensional 
sensory information (e.g. textual, auditory, and visual). The FUSE-CTX is actually 
built by a two-step process employing a Fuzzy, Self-Evolving Semantic topical 
maps (FUSE-SEM) and then superimposing FUSE-SEM topical map onto a FUSE- 
CTX topical map. First, FUSE-SEM, topical maps organize information semanti-
cally into categories, or topics, based on derived eigenspaces of features discovered 
within the information. Figure 4.6 illustrates an FUSE-SEM topical map with infor-
mation and topical “closeness” density for a series of responses received to a search 
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Fig. 4.6 The fuzzy, self-evolving semantic topical map
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query. The larger hexagons denote topical sources that best fit the search criterion. 
The isograms denote how close returns are to a particular cognitive information 
topic.

The FUSE-SEM information and topical closeness map have several important 
attributes:

• Searches employing FUSE-SEM topical maps use contextual information to 
discover links in relevant memories and stored information

• Image processing algorithms can be utilized to automatically analyze the visual 
output of the FUSE-SEM.

• The FUSE-SEM topical map is self-maintained and automatically locates input 
from relevant Cognitrons.

• FUSE-SEM topical maps operates unsupervised.

As topics develop during the data mining/sensing process, topical spaces are 
compared, within the APC, to stored emotions to determine derived “eigenmoods” 
within the emotional memory, as each topic is analyzed. The resulting eigenspaces 
determine topics that can be compared to the FUSE-CTX topical map to look for 
“closeness” of topics determined by cognitive processing algorithms to find the 
cognitive state to be used to make inferences about a question or task being posed. 
The eigenspaces are estimated under a variety of emotional memory conditions, 
dependencies, external inputs, and cognitive factors. Eigenvector trajectories are 
then characterized, capturing the dynamic aspects of relationship intersections 
between topical closeness and the information and memories available.

Once the FUSE-SEM is created, the resultant topical eigenspaces are mapped 
to the larger FUSE-CTX to show cognitive influences and ties to larger cognitive 
processes and other memory information, as depicted in Fig. 4.7. The value of 
superimposing the FUSE-SEM onto the FUSE-CTX is that the process defines the 
cognitive information domain’s hierarchical ontology in real-time, and hence 
enables the use of a real-time Topic Map Query Language (TMQL) to rapidly search 
more accurately, enabling sophisticated dialectic searches of only the information 
that has been deemed most important.

The need to mimic human intelligence demands a polymorphic architecture that 
is capable of both hard and soft computing. The APC FUSE-CTX topical map soft 
computing structure, utilizes the ACNF framework to evolve and grow context as it 
learns about its environment. The act of learning about a completely unknown envi-
ronment; sensing, observing, processing, inferring, with no a priori information can 
be challenging. This requires processing obscure and diverse streams of terse infor-
mation, thus, providing terse vectors for FUSE-SEM topical maps and cognitive 
mapping [153]. However, to a SELF, embedded with an APC, the amount of infor-
mation content obscurity or terseness is only seen as another state, set of topics, and 
level of ambiguity to be resolved [17, 18].

The FUSE-SEM topical map processing resolves these ambiguities by performing 
a critical role, collapsing multiple dimensional relationships between pieces of infor-
mation onto a two-dimensional space; a form that may be more easily computed and 
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understood by an emotional memory enhanced APC. As more information is 
 continuously acquired, it is iteratively mapped into previously understood knowledge 
and context structures within the ACNF [67, 79].

4.3  Self-Evolving, Cognitrons: The Heart of the SELF

As described in previous sections, the cognitive framework within a SELF is facil-
itated by Cognitrons that are used to mimic human reasoning and processing 
within the ACNF cognitive framework. As we push toward a completely autono-
mous SELF we require the SELF’s on-board system contain cognitive skills that 
can monitor, analyze, diagnose, and predict behaviors in real-time as the SELF 
encounters its environment. Described here is a cognitive system of autonomous, 
learning, self- evolving software agents that provide a SELF with the ability to 
mimic human reasoning in the way it processes information and develops knowledge 
[79, 80]. As explained previously, Cognitrons are persistent software components 
which perceive, reason, act, and communicate. Cognitrons provide a SELF the fol-
lowing abilities [16]:

 1. Act on its own behalf,
 2. Autonomous reasoning, control, and analysis,

Topical Map

Self-Organizing Map
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Associa�ons, by type:

Is influenced by

Fig. 4.7 Superimposing the FUSE-SEM onto FUSE-CTX
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 3. Allows the Cognitrons to filter information, communicate, and collaborate with 
other Cognitrons,

 4. Autonomous control to find and fix problems within the SELF,
 5. Situational predictability and offerings of recommended actions.

4.3.1  Self-Adapting Cognitrons

Intelligence reveals itself in a variety of ways, including the ability to adapt to 
unknown situations or changing environments. Without the ability to adapt to new 
situations, an intelligent system is left to rely on a previously written set of rules. If 
we desire to design and implement an autonomous SELF, it cannot depend on pre-
cisely defined sets of rules for every possible contingency. The questions then 
become [198]:

• How does an autonomous AI system construct good representations for tasks and 
knowledge as it is in the process of learning the task or acquiring knowledge?

• What are the characteristics of a good representation of a new task or a new 
piece of knowledge?

• How do these characteristics and the need to adapt to entirely new situations and 
knowledge affect the learning process?

As explained above, Cognitrons mimic human reasoning to process information 
and develop intelligence. The ACNF Cognitron architecture is comprised of a Java 
framework for constructing systems of Cognitrons, each with a specialized purpose, 
or talent. The architecture includes a Cognitron API that includes intelligent software 
processing functions for building multi-Cognitron intelligent autonomic systems. 
The Cognitron API also includes the framework for providing business rules and 
policies for run-time systems, including the autonomic computing core within a 
multi-Cognitron infrastructure. Figure 4.8 illustrates an overview of the Cognitron 
architecture framework operational process flow for a SELF.

The upper portion of Fig. 4.8 is broken into three separate combined internal/
external system interface inputs comprising: commands, solutions, data, and problems. 
From left to right, interface 1 includes Data/Information and Command inputs, 
interface 2 describes the process flow of inputs arriving from a human user via an 
external portal, and Interface 3 describes receiving solutions, commands, and 
approaches from within the system. Each data input spawns a search process, “Se”, 
to detect if we already know the command and already have a solution and/or if we 
don’t understand the command. If we don’t fully understand what has been given as 
input into the system Cognitrons begin to spawn processes to develop hypotheses to 
determine either a new solution, or attempt to refine the requirement within the 
Evolution Domain with what we already know from our box of “Memories”. When 
an internal or external directive has been satisfied, the output response includes 
submission of the satisfactory solution to the memory repository and/or is submitted 
for external dissemination as specified by the solution.
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4.3.2  Cognitron Tasking

Cognitrons have the ability to learn from experience and can be used to actually 
predict future states (prognostics). They are able to analyze sensor data using clas-
sification and clustering techniques to detect complex states and diagnose problems 
(anomaly detection and resolution). Cognitrons interface with other Cognitrons and 
components and have the ability to reason using domain-specific application objects 
and are given autonomous (proactive) behavior and goals. Lastly, they have the ability 
to correlate events to situations, reasons, and take action.

The Cognitron computing architecture uses genetic, neural-network and fuzzy 
logic to integrate diverse sources of information, associate events in the data and 
make observations. When APC processes are combined with a dialectic search [57], 
information processing accuracy and speed show significant promise. The dialectic 
search seeks answers to questions that require interplay between doubt and belief, 
where our knowledge is understood to be fallible. This ‘playfulness’ is key to hunting 
within information and is explained in more detail in the section that address the 
Dialectic Search Argument (DSA).
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4.3.3  The Cognitron Dialectic Search Argument (DSA)

The Dialectic Search uses the Toulmin Argument Structure to find and relate infor-
mation that develops a larger argument, or intelligence lead. The Dialectic Search 
Argument (DSA), illustrated in Fig. 4.9, has four components:

 1. Data: in support of the argument and rebutting the argument.
 2. Warrant and Backing: explaining and validating the argument.
 3. Claim: defining the argument itself.
 4. Fuzzy Inference: relating the data to the claim.

The argument serves two distinct purposes. First, it provides an effective basis 
for mimicking human reasoning. Second, it provides a means to glean relevant 
information from the FUSE-SEMs [91] and transforms it into actionable intelli-
gence (practical knowledge.) These two purposes work together to provide an 
intelligent system that captures the capability of a human Intelligence Operative to 
sort through diverse information and find clues.

This approach is considered dialectic in that it does not depend on deductive 
or inductive logic, though these may be included as part of the warrant. Instead, 
the DSA depends on non-analytic inferences to find new possibilities based upon 
warrant examples (abductive logic). The DSA is dialectic because its reasoning 
is based upon what is plausible; the DSA is a hypothesis fabricated from bits of 
information.

Once the examples have been used to train the DSA, data that fits the support and 
rebuttal requirements is used to instantiate a new claim. This claim is then used to 
invoke one or more new DSAs that perform their searches. The developing lattice 
forms the reasoning that renders the intelligence lead plausible and enables mea-
surement of the possibility.

As the lattice develops, the aggregate possibility is computed using the 
fuzzy membership values of the support and rebuttal information. Eventually, a 
DSA lattice is formed that relates information with its computed possibility. 
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The computation, based on Renyi’s entropy theory, uses joint information memberships 
to generate a robust measure of Possibility, a process that is not achievable using 
Bayesian methods.

4.3.4  The Cognitron Software Architecture

Within the ACNF, each Cognitron provides different cognitive capabilities (called 
cognitive archetypes) that form a cognitive ecosystem within the SELF cognitive 
framework, allowing inter-Cognitron communication, collaboration, and coopera-
tion. Figure 4.10 illustrates this ecosystem. Each Cognitron archetype, while having 
separate capabilities, has a defined cognitive structure, or ontology [191, 203] that 
was shown in Fig. 4.2.

Each Cognitron is a self-contained software unit (software agent) comprised of 
one or more services, shown in Fig. 4.10 [91]. The combination of services defines 
a Cognitron’s capabilities. There are five currently defined Cognitron types within 
the ACNF processing infrastructure:

 1. Data Steward: this Cognitron acquires raw data from a variety of sources, includ-
ing sensors, and prepares incoming data for use by other Cognitrons. The Data 
Steward Cognitron generates and maintains metadata required to find and extract 
data/information from heterogeneous sources.

 2. Advisor Agent: this Cognitron disseminates the right information to the right 
place at the right time; it provides capabilities that allow collaborative question 
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Fig. 4.10 The Cognitron cognitive ecosystem structure
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asking and information sharing by agents and end-users. Advisor Cognitrons 
generate and maintain topical maps required to find relative information frag-
ments, memories, and “expert” Cognitrons.

 3. Reasoner Agents: The Reasoner Cognitron interacts with the Data Steward and 
Advisor Cognitrons and utilizes the ontologies and lexicons to automate the 
development of domain-specific encyclopedias; it provides a mixed source of 
information and question answering that is used to develop an understanding of 
questions, answers, and their domains. Reasoner Cognitrons analyze questions 
and relevant source information to provide answers and to develop cognitive 
ontology rules for the SELF reasoning framework (explained in Chap. 8).

 4. Analyst Agents: The Analyst Cognitrons are fed by Reasoner Agents and utilize 
the developed ontologies and lexicons to expand upon questions and answers 
learned from collected information.

 5. Interface Agent: The Interface Cognitron assesses the correctness of major 
decisions and adjusts the decision processes of the Advisor Cognitrons. Interface 
Cognitrons also accommodate human-in-the-loop structures.

The ACNF Cognitron architecture provides the SELF with the following high- 
level features:

 1. An Intelligence Network: this includes mechanisms for gathering information, 
learning, inferences, and providing decision support and situational analysis to 
the SELF APC.

 2. Answer Extraction: these are mechanisms for posing hypotheses about situations 
and providing answers.

 3. Situational Analysis: mechanisms for finding situations that require active inves-
tigation and provide actionable intelligence to the ACNF APC.

Figure 4.11 illustrates the capabilities of the various Cognitrons.

4.3.5  Teaching Cognitrons to Learn and Reason

As explained above, Cognitrons have the ability to predict future states (prognostics). 
They are able to analyze sensor data using classification and clustering techniques 
to detect complex states and diagnose problems (anomaly detection and resolution). 
Cognitrons can interface with other autonomic Cognitrons and components, and 
have the ability to reason using domain-specific application objects and have auton-
omous (proactive) behavior and goals. They have the ability to correlate events to 
situations, reasons, and take actions.

Creating Cognitrons which are capable of learning and reasoning about informa-
tion provides a robust, adaptive information processing system capable of handling 
new situations [131]. When we use the term reason, we refer primarily to abductive 
logic, sometimes called critical thinking, to discriminate it from the formal logic 
methods of deduction and induction. For example, data mining uses induction to 
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develop assertions that are probably true. The dialectic search uses abductive logic 
to develop propositions that are possibly true. As explained earlier in the book, 
Bayesian methods cannot be used to measure possibility; in its place we use a 
method that is based upon Renyi’s entropy theory.

As explained above, Cognitrons mimic human reasoning, and continually searches 
for relevant information, formulates inferences and provide leads. A key value of the 
Cognitron is that it provides its ability to learn from users and from data. Using this 
learning, the Cognitron has the potential to provide users and analysts more rapid, 
accurate, and actionable knowledge extracted from various diverse sources of infor-
mation. As a software agent it can perform this function 24*7, and can be cloned/
scaled to support as many operators as required and as system resources allow.

The approach to analyzing intelligence information utilizing Cognitrons is three-
fold. First the FUSE-SEM topic map processing is investigated to semantically 
organize the diverse information collected. Second, the topic map produced by the 
FUSE-SEM is used to enhance the user’s comprehension about the situations under 
analysis. Third, as the user traverses the map to find related and relevant events, the 
results are used to train a Fuzzy, Active Resonance Theory Neural Network (FuNN) 
to replicate the approach.

This approach mimics human intelligence, learning from human agents utilizing 
a Conceptual Ontology to define particular domains, having experts (Cognitrons) 
to cartographically label the FUSE-SEM topical maps to capture the meaning of the 
integrated information thus capturing the knowledge of each Intelligent Information 
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Fig. 4.11 Cognitron Venn diagram
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in the FuNN [203]. The Cognitron processing environment has three processing 
levels, illustrated in Fig. 4.12. The first will identify patterns of behavior that have 
been seen (or behavior similar in a “fuzzy” relational way) before. The second is an 
expanded pattern recognition that involves pattern discovery algorithms that aug-
ment patterns that are similar to known patterns but need additional information to 
describe the pattern divergences. The third is a full up pattern discovery paradigm 
to make sense of information that has not been previously described (how do I find 
things I didn’t know I was looking for).

These processing levels are necessary because information domains are too diverse 
and extensive for humans to comprehend in total, which is why we divide labor into to 
classifications of expertise. Similarly, we divide information using ontologies, or onto-
logical views, where each view provides a certain perspective. By careful combination 
of such views we propose building a set of FUSE-SEMs that provide alternative, 
specialized maps of the information. These maps are designed to suit the different 
types of use, but they can be used in combination much like the dimensional views 
used for OLAP (Online Analytical Processing). Figure 4.13 illustrates three possi-
ble Cognitrons that could be used to implement the DAS: the Coordinator, the DAS, 
and the Search work together; each having its own learning objectives.

The Coordinator is taught to watch the FUSE-SEM topic maps, responding to 
new hits (input) that conform to patterns of known interest. When an interesting hit 
occurs, the Coordinator selects one or more candidate DAS Cognitrons and then 
spawns Search Cognitrons to find information relevant to each DAS. As time pro-
ceeds, the Coordinator learns which hit patterns are most likely to yield a promising 
lead, adapting to any changes in the FUSE-SEM topic map structure and sharing 
what it learns with other active Coordinators. The Search Cognitron takes the DAS 

Fig. 4.12 Cognitron processing levels
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prototype search vectors and, through the FUSE-SEM topic map, finds information 
that is relevant and related. The Search Cognitron learns to adapt to different and 
changing source formats and could include parsing procedures required to extract 
detailed information.

The final Cognitron, the DAS, learns fuzzy patterns and uses this to evaluate 
information found by the Search Cognitron. Any information that does not quite fit 
is directed to a sandbox where peer Cognitrons can exercise a more rigorous adapta-
tion routine to search for alternative hypotheses. The principal requirements 
addressed by the use of agents are:

 1. Learn to adapt to changes in the surrounding environment.
 2. Capture the knowledge as its cognitive framework processes information.
 3. Sharing of information and learning between Cognitrons.
 4. Hypothesize through the use of an Abductive Neural Network (discussed later).
 5. Remember and capture relevance in contextual threads so as to avoid old mis-

takes and false leads.

A similar diagram can be drawn for the FUSE-SEM topic map where the Search 
Cognitron draws information out of heterogeneous sources, the DAS is replaced by 
a Topic Map, and the Coordinator is a hyper-map with its own specific Ontology.
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4.4  Continuously Recombinant Neural Fiber Threads

The underlying issues and challenges posed by the introduction of Artificial 
Intelligence into system designs are not new. Systems for information processing and 
dissemination are an expensive infrastructure to operate and more-often-than- not 
these systems fail to provide tangible and useful situational information, typically 
overwhelming the system’s infrastructure with system messages and other low-
level data. A real-time SELF that incorporates human decision making processes 
must be supported by information derived from an extensive fusion and inference 
process and must operate in a uniform and cooperative model, fusing data into 
information and knowledge, so the system’s cognitive engine can make informed 
decisions [35].

Here we discuss a proposed modular architecture for our SELF, based on a mix-
ture of neural structures that add flexibility and diversity to the overall system capa-
bilities. We discuss the object architecture for a flexible, continually adaptable 
neural processing system capable of dynamically adding and pruning basic building 
blocks of the neural system as the real-time requirements of the system change. 
This modular architecture is based on a “mixture of experts” methodology [35]. 
The difference here is that in our architecture, an expert is defined as a particular 
fuzzy, genetic perceptron object, which has been created for a particular algorithm, 
and thus is an expert at processing a particular type of data in a particular manner 
[44, 45]. The algorithm for which the perceptron is generated may be predetermined 
or may have been evolved by the neural system itself, providing a continuously 
evolving neural architecture, based on genetic learning within the recombinant neu-
ral structure [1, 18].

One major piece to the puzzle of how to create a continuously evolving architec-
ture is the design of the information flows through the system. As discussed, the 
SELF information processing system requires the fusion of data and information 
from a myriad of heterogeneous sensors and sources (e.g., visual, auditory, radar, 
textual, etc.) to effectively create situational awareness and other products, which 
satisfy enduring information correlation challenges. The application of data fusion 
in multi-data type systems requires mathematical and heuristic techniques from 
fields such as statistics, artificial intelligence, operations research, digital signal pro-
cessing, pattern recognition, cognitive psychology, information theory, and decision 
theory.

This translation of data-into information-into knowledge requires revolutionary 
changes in the way data/information is represented, fused, refined and dissemi-
nated. One such new approach is a continuously recombinant genetic neural fiber 
network. We believe this new system representation can be used to capture and 
evaluate system codes for events (both simple and complex) and will provide the 
mechanisms for determining the metric resolution required for facilitating com-
plex manipulation of heterogeneous data types/sensor types, even in cluttered 
information environments and is the mathematical basis for the cognitive architectures 
discussed later.
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4.4.1  Self-Adaptive Cognitive Neural Fibers

Theory into human consciousness postulates that human cognition is implemented 
by a multitude of relatively small, special purpose processes, almost always uncon-
scious [177, 205]. These processes are autonomous and narrowly focused. They are 
efficient, high speed, and make very few errors because their purpose is narrowly 
focused. Each of these human processes can act in parallel with others. In the SELF, 
this is accomplished with fuzzy-neural perceptrons. Each perceptron is accom-
plished by codelets, small pieces of code that each performs one specialized simple 
task. Codelets often play the role of waiting for a particular type of situation to 
occur and then acting as per their specialization. These perceptron codelets are 
themselves miniature fuzzy-neural structures with specific purposes accomplished 
through tight constraints; but have the ability to learn and evolve. These are called 
Cognitrons and contain both short-term and long-term memories, providing the 
ability to communicate with other Cognitrons as needed. In human cognitive theory, 
the Cognitrons can be thought of as cell assemblies or neuronal groups [178, 205].

In the ACNF, first the unconscious Cognitrons, each working toward a common 
goal, form a coalition. These coalitions vie for access to the information or problem to 
be solved. The system “consciousness” provides a mediator for coalitions of processes 
to communicate with other coalitions. Information, or problems, that enter the system 
broadcast information to all unconscious Cognitrons. This allows the conscious 
coalition to recruit other Cognitrons that can contribute to the coalition’s goals. The 
coalitions that understand the broadcast (i.e., their Cognitrons perform processes 
which are applicable to the broadcast) and need to take action on the problem.

The ACNF architecture that was shown in Fig. 4.1 is designed to allow for system- 
wide action selection. The APC gathers information and facilitates communication 
between Cognitrons. The APC takes information from Cognitrons through the artifi-
cial cognition software and form coalitions of Cognitrons and updates the short-term, 
long-term and episodic memories through the learning algorithms. The information 
available in memory is continually broadcast to the Cognitrons that form the artificial 
consciousness of the system (i.e., they are responsible for the cognitive functionality 
of perception, consciousness, emotions, processing, etc.) [81].

The active Cognitrons are constantly broadcasting information to the system 
unconsciousness as the problem is solved and the system evolves, to see if any of the 
“unconscious” Cognitrons can help solve the current problem. One or more of them 
may decide they need to act and join the active coalition. In this case one or more of 
the currently active Cognitrons may rejoin the unconscious collective. As the sys-
tem evolves, links are formed between Cognitrons, based on their joint applicability 
to more problems. Links are created and strengthened by the amount time Cognitrons 
spend in the system’s active consciousness and by the system’s overall motivation 
at that time.

Each of the Cognitrons carries behaviors and drives. If the system is operating on 
intelligence information, the Cognitrons might have the behavior to look for infor-
mation that they perceive is from a particular source. If the system is operating as an 
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autonomous health management system, say for an airliner, the Cognitrons might 
have the behavior to look for data that indicates a problem within a particular sub-
system. Artificial Cognition, or overall perception, is an overseer and monitors the 
internal conditions of the various Cognitrons. If necessary, it can influence behav-
iors through the mediator. For instance, the Cognition subsystem can make one 
Cognitron more goal-oriented and increase the chances that a coalition of Cognitrons 
will make it to the active consciousness. Learning works with cognition and influ-
ences the ability to learn new behaviors [51].

Utilizing the concepts described above a Continuously Recombinant Neural 
Fiber Network was created to investigate the concept of utilizing Neural Fiber 
Networks to create agile neural structures. This network utilizes the FUSE-SEMs 
discussed earlier, Genetic Learning Algorithms, along with Stochasto-Chaotic con-
straints on the neural fiber connections to determine constraint optimization [18].

This Recombinant Neural Fiber is different from standard Neural Networks, in 
that the internal nodes are interconnected and learn from each other. These “inter- 
neurons” utilize Stochasto-Chaotic constraints that allow continuous adjustments in 
inter-neural perceptions (how they relate to each other) and adjust their perceptional 
processing accordingly. These recombinant neural fibers represent the continuously 
recombinant nature and learning nature of this Neural Fiber Network evolution. 
Layer n + 1, during its generational evolution develop neural fiber connections 
between layer nodes to aid in the learning process of the Neural Fiber evolution. 
These intra-neural layer connections allow the network to more efficiently evolve 
when intra-layer nodes communicate and learn from each other.

During genetic synthesis and recombinant neural fiber generations, connections 
(uni and bi-directional) are created and assessed. During successive generations of 
genetic neural structures, nodes may skip a neural generation, depending on the 
stochasto-chaotic constraints imposed on generational fiber evolution. The internal 
neural structure conformed to:
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 – y is the state of each neuron
 – t is its time constant
 – wji is the connection from the jth to the ith neuron
 – g is a gain
 – θ is a stochasto-chaotic bias term,

 – s ( )x
e x

=
+( )−

1

1
 is the standard logistic activation function,

 – And I represents an external sensor input (depending on the neuron)

• States are initialized utilizing a forward Stratanovich function (with a nominal 
integration step size of 0.1)
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4.4.2  Stochasto-Chaotic Differential Constraints

In order to derive the Stochasto-Chaotic constraints required for the Fuzzy, 
Continuously Recombinant Neural Fiber Network, we look to Chaotic Calculus 
[111]. In particular, we produce Chaos expansions for Markov chains via orthogonal 
functionals that are analogous to multiple stochastic integrals [154]. By looking at 
environments that converge, orthogonally, to stochastic differentials and chaotic 
differentials we can capture the environment and determine the existence and con-
nectivity of pulses that form intelligent sequences (in a stochastic and chaotic sense). 
We look for solutions in chaotic calculus (martingales), whose multiple stochastic and 
chaotic integrals can be expressed as polynomial solutions (utilizing Meixner and 
Krawtchouk polynomials), and therefore whose solutions can be constructed utiliz-
ing Renyi’s mutual information theory. In this way, we can compute these stochastic 
and chaotic functionals as discrete iterated integrals with respect to a compensated 
binomial process [41, 42].

We start with deriving the Kreatchouk polynomial differential solutions by gen-
erating the Koekoek and Swarttouw function which is a stochastic process and 
allows us to construct orthogonal functionals of Markov chains. This construction is 
related to the chaos expansion:
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assuming finite Markov chains in continuous time (finite neural structures). The notion 
of orthogonal tensor Markov chains where one is stochastic and one is chaotic allows 
us to solve for the two main conditions of information and data evolution, both stochas-
tic and chaotic evolutions. The pseudo-randomness of the data evolutions due to 
unknown but deterministic functions provides a standard Markov solution, while the 
stochastic input through non-linear conditions provides a Chaotic Markov solution that 
is orthogonal to the stochastic Markov solution. For the non- changing information in 
the SELF’s environment that look like actual random processes, the solutions will be 
orthogonal. For the pseudorandom-looking processes they will be simultaneously 
solve a Stochastic and Chaotic equation and should converge in the solution space. 
The non-pseudorandom “noise” in the environment should solve distinctly orthogo-
nal Stochastic/Chaotic pairs of equations and show up in the solution space as 
orthonometric pairs of solutions. The isometric Stochastic/Chaotic chain looks like:
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and from here the Stochastic Markov is constructed as:
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and the Chaotic Markov is constructed as:

 J f f i i Xn n n n i
i i

n

n

( ) = …( ) ( )
≤ < <
∑ 1

1

1 1

, , Φ
�

 (4.5)

With:

 f f i i e en n n i i
i i

n

n

= …( ) ° °
≤ < <
∑ 1

1
1

1

, , �
�

 (4.6)

Knowing whether sensory information is random or pseudorandom allows 
the SELF to determine natural versus man-made information. Nature doesn’t utilize 
pseudorandom sequences. Solutions to the orthogonometric equations becomes the 
constraints for the Genetic-Neural Fuzzy populations of Neural Fiber Threads, 
eventually forming a Neural Fiber Network that provides an internal neural structure 
that can process complex stochastic and non-linear data and information patterns 
that are encountered within the SELF’s ever changing environment.

4.4.3  Continuously Recombinant Neural Fiber Topology

The SELF’s internal neural fiber performance is highly dependent on its structure. 
The interaction allowed between the various Fiber Nodes of the network is specified 
using the structure only. A Neural Fiber Network structure is not unique for a given 
problem, and there may exist different ways to define a structure corresponding to the 
problem. Hence, deciding on the size of the Neural Fiber Network (number of nodes, 
number of interconnections, number of Fuzzy, Self-Evolving Topical Maps, etc.) is 
also an important issue. Too small a Neural Fiber Network will prohibit it from 
adequately characterizing and learning complex information/knowledge patterns; 
creating a Neural Fiber Network that is too large will be too complex to be of practical 
use and will consume too much of the SELF’s always limited resources.

Determining the SELF’s optimal Neural Fiber topology is a complex problem. It is 
even impossible to prove that a given structure is optimal, given that there may be 
many Neural Fiber structures that may be appropriate. Different combinations of 
nodes and connections are tried out so that it gives maximum level of response 
within the given Stochasto-Chaotic constraints. Such methods rely on overall per-
formance of the Neural Fiber Network, so parts of the network that contributed well 
are difficult to identify. In human terms, every human’s neural pathways are differ-
ent. It is not possible to determine which structure is optimal, given that every 
human is different. The use of Evolutionary Programming within the ACNF pro-
vides the mechanism for defining its internal Neural Fiber Network topology, with 
their natural makeup of exchanging information. The search space here is also too big, 
similar architectures may have quite difference performance; different architectures 
may result in similar performance. This makes Evolutionary Programming a better 
choice as opposed to algorithms which start with a maximal (minimal) network and 
then deletes (adds) layers, nodes or connections when necessary [43].
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The genotype representation of the SELF’s Neural Fiber Network architecture is 
critical to the functionality of its Continuously Recombinant Network. Considerations 
have to be taken so that the optimal Neural Fiber structures are representable and 
meaningless structures are excluded. The Evolutionary Programming (EP) genetic 
operators yield valid offspring, and the representation do not grow in proportion to 
the network. Ideally, the representation should be able to span all potentially useful 
structures and omit unviable network genotypes. The encoding scheme also con-
strains the decoding process. A Neural Fiber Network requiring a Continuously 
Recurrent structure should have a representation expressive enough to describe 
recurrent networks. Also the decoding mechanism should be able to read this repre-
sentation and transform it into an appropriate recurrent network.

The low-level or direct encoding techniques specify the Neural Fiber connec-
tions only. Indirect encodings are more like grammatical rules; these rules suggest 
a context free graph grammar according to which the Neural Fiber Network topol-
ogy can be generated. Direct encoded genotypes increase too fast in length with a 
growing network. Thus, the maximum topological space has to be limited. This may 
exclude the fittest structure in the lot, or may result in networks with special 
 connectivity patterns.

One of the major challenges with evolving the Neural Fiber Network was to find 
a meaningful way to crossover disparate Neural Fiber topologies. Usual genetic 
operators will fail to preserve the structural innovations occurring as part of the 
evolutionary process. Some kind of a speciation is required so that individuals com-
pete primarily within their own niches, and not with the population at large. This is 
why EP was utilized to guarantee that the new parental population was not too far 
deviated from previous generations. The EP algorithms used utilize methods for 
historical markings, speciation, and incremental growth from minimal structure for 
efficient evolution of the Neural Fiber Network topology [35].

The EP algorithms divide the population into different species on the basis of a 
compatibility distance measure, utilizing the FUSE-SEMs. This measure is generally 
derived from the number of disjoint and excess genes between two individuals. If an 
individual’s distance measure from a randomly selected one is less than a fuzzy 
membership value, then both individuals are placed into the same species. Once the 
classification is done, the original membership values are adjusted by dividing by the 
number of individuals in the species. A species grows if this average adjusted fitness 
is more than the population average, otherwise it shrinks in size. By doing so, the EP 
algorithms not allow any particular structure dominate over the whole population, but 
at the same time allows for the growth of the better performing ones, providing both 
local and global optimization of the Neural Fiber Network (L2 vs. L∞).

It should be noted that the same input–output mapping can be implemented by 
different Neural Fiber Network architectures. For a given data environment, the 
topology for Recombinant Neural Fiber Network is not unique, in that the genotype 
representation of two structurally different Neural Fiber Networks will be different 
even though the functional mapping they define may be same. EP algorithms are not 
able to detect these symmetries and hence a crossover in such a case would very 
often result in an unviable offspring. Moreover, in Neural Fiber Networks where 
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more than one signal needs to be learned, there are chances of incompatible roles 
getting combined leading problems with Neural Fiber Network convergence. A simple 
solution to these problems is to restrict the selection operator to small populations, 
and to introduce intuitive biased measures in crossover and mutation.

The ACNF’s Continuously Recombinant Neural Fiber Network is capable of 
learning very high-order possibilistic correlations that are present in a continuously 
changing data environment. The learning algorithms provide a powerful mechanism 
for generalizing behavior to new environments. For these Neural Fiber Networks, 
endogenous goals play an important role in determining behavior and EP methodolo-
gies are the appropriate mechanism for developing goals and purposeful behavior.

The EP algorithms are computationally expensive, but are necessary when little or 
no prior information about the data environment are available. More effectively, 
they are good algorithms to start with the design and once some knowledge is 
gained, other purposive algorithms may be designed to come up with the solution 
faster. Parallel implementations of these algorithms will also become more and 
more purposeful as the need for designing real world applications arises [92].

4.5  Discussion

Chapter 4 has laid out what it means to be cognitive and has described the concepts 
and architectures for an ACNF capable of providing synthetic, human-like, cogni-
tive capabilities. One of the major components of the processing framework for the 
SELF that allows it to process, store, and retrieve information effectively is its 
overall memory system. The next chapter discusses Artificial Memory Systems 
required for the SELF to ingest, encode, store, and recall (construct) information 
and knowledge within its cognitive infrastructure.
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At their very heart, memories involve the acquisition, categorization, classification 
and storage of information. The purpose of memory is to provide the ability to recall 
information and knowledge as well as events that have happened to us in the past. 
We base our current understanding of the world around us on what we have learned 
and stored in the past and we react to that same environment relying on the memo-
ries of what has happened before, and what has been learned in the past. Without 
our memories, day-to-day living is not manageable. It would require continuous 
abstract thought and continuous reiteration of the most basic functions, analogous 
to the symptoms of an Alzheimer patient. Without memories, we wouldn’t be able 
to drive a car, brush our teeth, or perform any of the things we do “without thinking 
about them.” Through our abilities of conceptual recollection of past memories we 
are able to reflect, infer, and even communicate with other people.

Thus, implementation of an autonomous SELF requires these same abilities. 
Memories are typically classified into three different types: Sensory, Short-Term, 
and Long-Term. Each memory type is designed to support different types of time 
based system context processing functions. We will explore each type of memory 
system and the implications to our SELF.

We begin our discussion of memory types with a look at the relationships 
between the three main types of memories. Figure 5.1 illustrates our SELF Memory 
Upper Ontology which describes these relationships.

5.1  Artificial Context in Memory Systems

In order for the SELF to mimic human reasoning and processing, it must be 
provided with real-time and recursive cognition-based information discovery, 
decomposition, reduction, normalization, encoding, and memory recall (knowledge 
construction) [229]. Thus, a SELF must be able to recombinantly assimilate infor-
mation content into knowledge [229]. To accomplish this, the ability to develop 
context specific relationships is required. These relationships are developed using 
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knowledge relationship threads sewn together during SELF development of each 
system’s cognitive objective [229]. Concept management of these objectives 
requires a layer of ongoing processing known as a Cognitive Conceptual Ontology 
(CCO) [90] in order to be able to “think” about, correlate and integrate information, 
over time, into its overall memories. A CCO’s objective is to manage concepts using 
the internal semantic language of a SELF just as humans do when they count and/
or conceive thoughts in their mind using their native language. Analogously, multi- 
lingual individuals are sometimes asked, “What language do you count, think, or 
dream in?” When describing how science integrates with information theory, 
Brillouin defined knowledge succinctly as resulting from a certain amount of think-
ing and distinct from information which had no value, was the “result of choice,” 
and was the raw material consisting of a mere collection of data [26, 27]. Additionally, 
Brillouin concluded that a 100 random sentences from a newspaper, or a line of 
Shakespeare, or even a theorem of Einstein have exactly the same information value. 
Therefore, information content has “no value” until it has been thought about and 
thus turned into knowledge [27]. Subsequently, knowledge generated is ultimately 
used continuously for making decisions usually resulting in various levels of infer-
ence and specific activity. Each activity usually comprises some form of action and 
reaction, which leads rapidly to a discussion of appropriate inference and appropriate 
action by a SELF.

Decision-making is a great concern due to the requirement for handling ambiguity 
and the ramifications of erroneous inferences. Often there can be serious conse-
quences when actions are taken based upon incorrect recommendations and can 
influence decision-making before the inaccurate inferences can be detected and/or 
even corrected. Underlying the data fusion domain is the challenge of creating 
actionable knowledge from information content harnessed from an environment of 
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vast, exponentially growing structured and unstructured sources of rich complex 
interrelated cross-domain data. As expected, dealing with ambiguity is a major 
challenge for humans, as well as, the autonomous SELF. This will be discussed at 
length throughout the entirety of this book.

Dourish [104, 105] expressed that the scientific community has debated defini-
tions of context and it’s uses for many years. He discussed two notions of context, 
technical, for conceptualizing human action relationship between the action and the 
system, and social science, and reported, “ideas need to be understood in the intel-
lectual frames that give them meaning.” Hence, he described features of the envi-
ronment where activity takes place [103]. Alternatively, Torralba [207] derived 
context based object recognition from real-world from scenes, described that one 
form of performing the task was to define the ‘context’ of an object in a scene was 
in terms of other previously recognized objects and concluded, that there exists a 
strong relationship between the environment and the objects found within, and that 
increased evidence exists of early human perception of contextual information. Dey 
[98] presented a Context Toolkit architecture that supported the building of more 
optimal context-aware applications. He argued, that context was a poorly used 
resource of information in computing environments. To him, context was informa-
tion, which must be used to characterize the collection of states or as he called it the 
“situation abstraction” of a person, place or object relevant to the interaction 
between a user and the application. Similarly, when describing a conceptual frame-
work for context–aware systems, Coutaz et al. [39] concluded that context informs 
recognition and mapping by providing a structured, unified view of the world in 
which a system operates. The authors provided a framework with an ontological 
foundation, an architectural foundation, and an approach to adaptation, which they 
professed, “…all scale alongside the richness of the environment.” They concluded 
that context was critical in the understanding and development of information sys-
tems. Winograd [212] noted that intention could only be determined through infer-
ences based on context. Hong and Landay [133] described context as knowing the 
answers to the “W” questions (e.g. Where are the movie theaters?). Similarly, 
Howard and Qusibaty [135, 136] described context for decision making using the 
interrogatory 5WH model (who, what, when, where, why and how). Lastly, Ejigu 
et al. [109] presented a collaborative context aware service platform, based upon a 
developed hybrid context management model. The goal was to sense context during 
execution along with internal state and user interactions using context as a function 
of collecting, organizing, storing, presenting and representing hierarchies, relations, 
axioms and metadata.

This chapter describes the importance of context in memory systems and the 
importance of applying a cognitive processing framework and memory encoding 
in conjunction with a storage methodology for capturing contextual knowledge, 
as well as, the importance of appropriate inferencing and having decision making 
constructs within the system which effectively use a knowledge repository that 
can efficiently manage the cognitive concept development process using internal 
language for each instance of specific context.
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5.2  Sensory Memories

The Sensory Memory within the SELF’s memory system are memory registers 
where raw, unprocessed data/information are ingested via a SELF’s environmental 
sensors and placed into preconscious buffers to begin initial processing. An ACNF’s 
sensory memory system should be designed to accommodate large capacity for 
large quantities of possibly disparate and diverse information from a variety of 
sources. Additionally, large sensory observations also have the characteristic of 
requiring processing within a short duration of time; hence, high volume, high pro-
cessing rates. Analogously, a human ingests and processes hundreds of thousands of 
sensory perception events per second. Information buffered in sensory memory must 
be sorted, categorized, turned into information fragments, metadata, contextual 
threads, and attributes (including emotional attributes) and then sent on to the working 
memory (Short-Term Memory) for initial cognitive processing. Based on the informa-
tion gathered in this initial Sensory Memory processing, Cognitron threads are gener-
ated, creating discrete initial “thoughts” about the data and aggregated into context 
specific CCO hypotheses. The thought process information, along with the sensory 
information is passed to working memory on the backs of Cognitrons while the 
Artificial Cognition processes within the ACNF are alerted. Figure 5.2 illustrates 
the data/information content primitives which make up a SELF’s Sensory Memory 
Lower Ontology.

Sensory Memory, depicted in Fig. 5.2, as a minimum, is decomposed into a 
few of the senses which could be generally required for autonomous SELFs 
(e.g. audio, visual, textual, etc.) depending on the need/gap required. Touch and 
olfactory sensing are examples of others. Each sense requires a domain specific sub-
system that can process the essential elements or data primitives. Each sub-system 
is responsible for providing context using the appropriate memory interfaces, existing 
knowledge, to the CCO for managing knowledge relativity threads discussed later 
in this chapter.
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5.3  Short-Term Artificial Memories

Short-Term or “Working” memory within the SELF’s ACNF is where new information 
is temporarily stored while it is being processed. Just as in humans, Short-Term 
Memory (STM) is also where most of the reasoning within a SELF occurs. STM is 
divided into two major constructs, known as, “rehearsals”: Elaborate and Maintenance 
rehearsals. The ACNF continually refreshes, or rehearses, memories while they are 
being processed and reasoned upon, so memories do not degrade until they can be 
placed into Long-Term Memory. Figure 5.3 illustrates the Short- Term Memory Lower 
Ontology for the SELF.

Figure 5.3 illustrates the Short-Term Memory Lower Ontology for the SELF. 
Elaboration and Maintenance rehearsals are processes in which humans attempt to 
comprehend their current environment in context with the newly ingested informa-
tion. The contexts are created by the senses and the inferences are generated by 
internalizations of time, space or current location, and what the possible transmitted/
communicated response might be. Figure 5.3 also shows how each of the rehearsal 
types are tied to an Episodic buffer which is the event buffer of short term informa-
tion content being processed.

5.3.1  Short-Term Memory Attention Processing

As explained above, in the human brain, Short Term Memory (STM) corresponds to 
that area of memory associated with active consciousness, and is where most 
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cognitive processing takes place. The temporary storage requires rehearsal to 
develop and maintain context currency until placed into the Long-Term Memory 
(LTM) processing sub-system. A SELF’s, memory system does not decay over 
time, however, the notion of “memory refresh” or context currency through rehearsal 
is still necessary to maintain real-time qualitative interaction with a SELFs environ-
ment. In the ACNF, the rehearsal comprises keeping track of many simultaneous 
“versions” of independent cognitive concepts within STM as they are processed and 
continuously evaluated by the Artificial Cognition algorithms. This is illustrated in 
Fig. 5.4, as the SELF STM Attention Loop.

One of the major functionalities within the STM Attention Loop is the Spatio- 
Temporal Burst Detector [192, 209]. Within these processes, Information Fragments 
are ordered in terms of their spatial and temporal characteristics. Spatial1 and 
Temporal transitions states are measured in terms of mean, mode, median, velocity, 
and acceleration and are correlated between their spatial and temporal characteris-
tics and measurements [5]. Rather than just looking at frequencies of occurrence 
within information, we also look for rapid increases in temporal or spatial charac-
teristics that may trigger an inference or emotional response from the cognitive 
processes. State transitions bursts are ranked according to their weighting (velocity 
and acceleration), together with the associated temporal and/or spatial characteristics, 

1 Spatial in this reference can be geographically (either 2-D or 3-D), cyber-locations, or other 
characteristics that may be considered “spatial” references or characteristics.
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and any emotional triggers that might have resulted from this burst processing. This 
Burst Detection and processing may help to identify relevant topics, concepts, or 
inferences that may need further processing by the Artificial Prefrontal Cortex and/
or Cognitive Consciousness processes.

There are three distinct processes within STM that use initial Recombinant 
kNowledge Assimilation (RNA) [239] instructions to decompose, reduce, compare, 
contrast, and discover content to determine the flow of information transfer after 
cognitive processing. This process is shown in Fig. 5.5. These are:

• Information Fragment Selection: involves filtering incoming information from 
Preconscious Buffers decomposing them into separable information fragments and 
then determining which information fragments are relevant to be further processed 
through reduction, comparison, contrast, and then stored, and acted on by the ACNF. 
Once information fragments are created from the incoming sensory information, 
they are analyzed and encoded with initial topical information, tagged as metadata 
attributes that follow information content through the flow of cognitive processes, 
continuously organizing and integrating incoming  information fragments into the 
SELF’s overall LTM system. The information fragment encoding creates an initial, 
cognitive map used by organization and integration functions.

• Information Fragment Organization: processes within the ACNF create the 
internal structural representation of knowledge and context comprising attributes 
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within the information fragment cognitive map that allow it to be organized for 
integration into the overall SELF LTM sub-system. These attributes define how 
information is represented in LTM and determine how memory fragments are 
used to construct, or recall memories. These constructs are known as Knowledge 
Relativity Threads [80, 229] that capture knowledge context of information 
fragments.

• Information Fragment Integration: Once information fragments within the 
STM have been encoded, they are compared, related, and attached to larger, 
topical cognitive maps that represent relevant subject or topics within the SELF 
LTM system [199]. This reasoning process will be described in detail in Chap. 8. 
Once information fragment cognitive maps have been integrated, processed, and 
reasoned about, including analysis of emotional triggers and defined as emotional 
memory information, they are queued up for processing by both the LTM and 
Artificial Prefrontal Cortex sub-systems to determine required actions. At this 
point, the STM sub-system should have completed all memory encoding, map-
pings to topical associations, and their contexts captured. If the representations 
created are deemed relevant to “remember” they are stored in one of the Long 
Term Memory systems.

5.4  Long-Term Artificial Memories

Long-Term Memory (LTM), in the simplest sense, is the permanent place where we 
store our memories. If information we take in through our senses doesn’t make it to 
LTM, then we do not “remember” it. The amount of knowledge and context stored 
should be made configurable, as well as, the value proposition that determines the 
threshold of importance. Information that is processed in the STM makes it to LTM 
through the process of rehearsal, processing, encoding, and then association with 
other memories. In the brain, memories are not stored in files, or in a database. 
Memories, in fact, or not stored as whole memories at all, but are stored as informa-
tion fragments. The process of recall, or remembering, is a process of rapid recon-
struction of memories from information fragments that are stored in various regions 
of the brain, depending on the type of information. Thus, we propose developing a 
SELF in a similar manner, mimicking human reasoning. The SELF LTM Lower 
Ontology is illustrated in Fig. 5.6, describing three main types of LTM:

• Explicit, or Declarative Memories
• Implicit Memories [34]
• Emotional Memories

5.4.1  Explicit or Declarative Long-Term Memories

Explicit or Declarative Memory is utilized for storage of “conscious” memories or 
“conscious thoughts.” Explicit memory carries those information fragments utilized 
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to create what most people would “think of” when they envision a memory. Explicit 
memory stores, objects, events, and things that are experienced in the person’s envi-
ronment. Information fragments stored in Explicit Memory are normally stored 
with relationship attributes describing or pointing to other information fragments that 
relate in some fashion. The more meaningful the association, the stronger the memory 
and the easier the memory is to construct/recall when chosen. In the SELF, Explicit 
Memory is divided into different regions, depending on the type or source of infor-
mation. This is because different types of information fragments within the SELF’s 
memories are encoded and represented differently, each with its own characteristics 
that make it easier to construct/recall memories later. In the SELF LTM, we utilize 
FUSE-SEMs as described in Chap. 4, to associate currently processed Information 
Fragments from the STM with memories stored in the LTM. LTM information frag-
ments are known as Binary Information Fragments (BIF) and are not stored in 
databases or as files, but encoded and stored as a triple helix of binary information 
(see Fig. 5.7) of continuously recombinant neural fiber threads that represent:

• Binary Information Fragment (BIF) object along with the BIF Binary Attribute 
Objects (BAOs),

• BIF Recombinant Knowledge Assimilation (RNA) Binary Relativity Objects,
• Binary Security Encryption Threads.

Each fragment of context is represented by an object which carries with it a set 
of attributes and characteristics used throughout the processing within a ACNF sys-
tem to describe the essence of a given information fragment. Knowledge Relativity 
Threads (KRT), described later in this chapter, form relationships between developing 
objects of context. These objects are known as Binary Relativity Objects (BROs), 
a name given to them to simply represent a point in time in object development 
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when an object’s context is being related to another. Built into the RNA Binary 
Relativity Objects are another time based type known as Binary Memory 
Reconstruction Objects (BMRO), which are designated as such when based on the 
type and source of BIF, the memories are to prepositioned for recall purposes or 
reconstruction. There are several types of Binary Memory Reconstruction Objects, 
discussed later in this chapter:

• Spectral Eigenvectors that represent a memory used in the reconstruction process 
and characterized by implicit and biographical LTM BIFs

• Polynomial Eigenvectors that characterize memory reconstruction using Episodic 
LTM BIFs
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Fig. 5.7 SELF LTM triple Helix encoding
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• Socio-Synthetic Arousal State Vectors that characterize memory reconstruction 
using Emotional LTM BIFs

• Temporal Confluence and Spatial Resonance coefficients that characterize memory 
reconstruction using Spatio-Temporal Episodic LTM BIFs

• Knowledge Relativity Contextual Gravitation coefficients that characterize 
memory reconstruction using mathematical and Semantic LTM BIFs

5.4.2  Long-Term Spatio-temporal Memories

In Fig. 5.8, the SELF Spatio-Temporal memory is depicted as a special type of 
Episodic Memory specifically designed to store complex temporal (time-based) 
and/or spatial (geographically-based) memories [179]. These can be thought of as 
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State-Sequence memories that track memory characteristics as they change over 
time and or space.

Figure 5.9 depicts temporal memory consisting of two layers: Layer 1, the lower 
layer, corresponds to Information Fragment Objects that represent topical object 
entities (e.g. car, person, lamp, etc.) and also SELF environment encountered events. 
Layer 2 represents each LTM Information Fragment Objects relationships to other 
LTM Information Fragment Objects relative to time and geolocation utilizing 
weighting coefficients [49, 50]. This provides complex time and spatial relation-
ships to be learned, maintained, encoded, stored, and recalled within the SELF. 
These relationships are stored as weighted Temporal Confluence and Spatial 
Resonance coefficients, based on their relative strength [71, 74].

5.4.3  Long-Term Semantic Memories

Semantic Memory is where meanings, understandings, and concepts/concept-based 
knowledge are stored. Semantic memory is normally unrelated to experiences, 
context, or relevance. Semantic Memory is, in general, a collection of factual knowl-
edge that has been learned about the world. The Information Fragments stored in 
Semantic Memory does not need to involve a specific event or emotion, but the memory 
is an object or relationship that is just fact. An example would be the relationship, 
“A screwdriver is a tool.” This memory may be stored without any relationship as to 
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how this fact was learned. As explained above, these relationships are stored as 
Knowledge Relativity and Contextual Gravitation coefficients and are used during 
memory construction/recollection.

5.4.4  Long-Term Implicit Memories

Implicit memories carry information used to perform tasks without realizing that 
recall has happened. In humans, for example, once we learn to drive a car, we per-
form the actions while driving without specifically trying to recall how to perform 
them. We unconsciously recall how to perform the actions and act on them without 
“conscious” thought. This type of information is carried in Implicit Memory. There 
are two distinct types of Implicit Memories within the SELF, Procedural and 
Priming Memory.

5.4.4.1  Priming Implicit Memory

Priming Memories carry triggers that allow us to recall, or reconstruct memories 
faster. They act as a stimulus, or activation mechanism for memories. Exposure to a 
stimulus during learning results in an implicit trigger to be stored that may be trig-
gered by a similar stimulus while reconstructing a memory later. This can occur 
during the storage of any type of LTM. In the SELF, Priming Memories occur during 
creation of the Knowledge Relativity Threads. Knowledge Relativity Meta-tags that 
are relevant to the correlation of sensory inputs, e.g., when both Visual and Auditory 
contextual correlation is present in memory creation, are captured and stored as 
Priming Memory cues that aid in memory recall/reconstruction under similar circum-
stances. This does not have to invoke an emotional response, just a correlation response 
to previously encountered situations. It, in essence, is a facilitated perception of 
sensory stimuli that is precipitated by earlier exposure to such stimuli. These triggers, 
or contextually correlated memory meta-tags allow the SELF to more rapidly recall/
reconstruct memories that are particularly relative to sensory cues.

5.4.4.2  Procedural Implicit Memory

Willingly or unwillingly, consciously or unconsciously, humans live scripted or 
learned lives. This is not to say that one can look ahead into the next chapter and find 
out what one will have for dinner a month later. Life brings surprises and the scripts 
we discuss are not the “scripts of life,” but rather much smaller groupings of events 
that represent familiar routines and are stored as procedural memory in our brains. 
Scripts as large structured chunks of information, typically sequences of events 
describing standard routines, permeate human life, society, culture. Humans are 
well aware of them and have the ability of thinking of and manipulating the whole 
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scripts at any level or detailization, or grain size. Thus, when you buy a new iPhone, 
you must program or set it up. This is a script that your manual describes by chunk-
ing it up into setting up your calendar, email, GPS, etc., each of each is also a script. 
Within the script of date and time, a few clicks will set you the date and a few others 
the time of the day. Within the latter, there is a tiny subscript of setting up the hour, 
and another to set up the minutes. Other, less well-defined scripts seem to be capable 
of almost infinite grain size refinement.

Procedural Implicit Memories allow previously learned tasks to be performed 
without specific “conscious” memory recall/reconstruction of how to perform the 
task. Procedural memories tend to be inflexible, in that they are tied to the task being 
performed. For example, when we decide to ride a bike, we don’t unconsciously 
recall/reconstruct memories of how to drive a car, we recall/reconstruct unconscious 
Procedural Memories of how to ride a bike. In a SELF, tasks that are learned and are 
deemed ‘important’ to capture for future use will have Procedural Memories stored 
as steps, or “procedures” that are required to perform the same task in the future. 
The specific Procedural Memories would be tied to the particular domain for which 
a SELF is designed.

In his work on Procedural Memory and contextual Representation, Kahana showed 
that retrieval of implicit procedural memories is a cue-dependent process that contains 
both semantic and temporal components [144]. Creation of Procedural Memories is 
tied not only to task repetition but also to the richness of the semantic association 
structure [220]. Earlier work by Crowder, built on Landauer’s Procedural Memory 
computational models and Griffith’s topical models [221], theorized about the cre-
ation of artificial cognitive procedural memory models based on Knowledge Relativity 
Threads to create the semantic associations [73] and work in Fuzzy, Self- Organizing, 
Semantic Topical Maps [59, 60] counted on the topical model needed to create long-
term procedural memories. These Knowledge Relativity models and Topical Maps 
are based on early work by Zadeh. Zadeh [219], described tacit knowledge as world 
knowledge that humans retain from experiences and education, and concluded that 
current search engines, with their remarkable capabilities, did not have the capability 
of deduction, that is the capability to synthesize answers from bodies of information 
which reside in various parts of a knowledge base. More specifically, Zadeh describes 
fuzzy logic as a formalization of human capabilities: the capability to converse, reason 
and make rational decisions in an environment of imprecision, uncertainty, and incom-
pleteness of information. In their work in cognition frameworks, Crowder and Carbone 
[72, 75] expand on the work not only by Zadeh but also by Tanik [112] in describing 
artificial procedural memories as procedural knowledge gained through cognitive 
insights based on fuzzy correlations made through a labeled form of an FUSE-SEM 
(discussed in Chap. 4) that provides the following attributes:

 1. Contextual algorithms explore the map visually for informational connection 
located by meaning.

 2. Procedural searches utilize semantic contextual information to find links to 
relevant procedural information.
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 3. The informational maps autonomously locate temporal and semantic associations 
that provide procedural connections to a topic.

 4. The FSSOM represents a normalized representation of any physical information 
content used in the development of the procedural knowledge and content.

5.4.5  Procedural Memory Description

In artificial intelligence, procedural information is one type of knowledge that can 
be learned and carried by a Cognitron [148]. From the initial research in the 1998 
and 1999 [88, 89], work has continued on the development of artificial memory 
systems that mimic human processing, storage, and retrieval. It is believed that pro-
viding a cognitive framework that mimics human processing and reasoning also 
requires creating a constructive memory system similar to human memory storage 
and processing [87, 122]. The initial work in artificial memory systems involved 
the use of Cognitrons to create the overall artificial cognitive framework [44, 45]. 
This work led to investigation into Linguistic Ontologies used to facilitate conceptual 
learning in the creation of artificial neural memories [44, 45, 47].

5.4.5.1  Creation of Artificial Procedural Memory Scripts

Continued investigation, utilizing the work of Kahana [144] in associative episodic 
memories [43], led to the development of a Cognitron framework for creation, 
storage, and retrieval artificial implicit memories [78, 79, 81] (see Fig. 5.7). Based 
on this work, a systems and software architecture specification was developed for an 
artificial cognitive framework utilizing Cognitrons [91].

The main hypothesis here is that the procedural memory scripts can be detected 
and acquired with the combination of rule-based computational semantic tech-
niques enhancing the SELF’s understanding of repeatable and useful procedures. 
The objectives of artificial procedural memories are:

 1. To identify the procedural memory script acquisition using a combination of 
meaning-rule-based techniques from the Ontological Semantic Technology with 
meaning- and cognitively-enhanced machine-learning techniques from Cognitive 
Artificial Intelligence.

 2. To develop the principles of comparison of the comprehension of natural language 
by the SELF (see Fig. 5.10).

Crowder, in conjunction with Carbone and Friess, in researching artificial neural 
memory frameworks that mimic human memories, are creating computer architec-
tures that can take advantage of Raskin and Taylor’s Ontological Semantic 
Technology [191, 204] and create an artificial procedural memory system that has 
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human reasoning capabilities and mimics the fuzzy and uncertain nature of human 
cognitive processes. This new focus for Crowder [90] is to create processes necessary 
for the creation, storage, retrieval, and modification of artificial procedural memo-
ries (see Fig. 5.11).
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5.5  Group Consciousness and Memory Sharing

In order to facilitate self-evolution within the SELF, each cognitive subsystem, each 
Cognitron, each and every part of the system must be able to learn from every other 
part of the system. In essence, the combination of all of the Cognitrons within the 
SELF form a collective, or group consciousness that drives how the system learns, 
reasons, and behaves. In order to facilitate this collective group consciousness, there 
must be memory sharing across the entire system. And while the system has a 
collective set of LTMs, these memories, their implications, their contexts, and their 
emotions must be broadcast, or transmitted, to each part of the system so that each 
Cognitron can evaluate how they are affected by learning and ‘remembering’ that 
goes on in other Cognitrons. SELF System-Level goals must be evaluated in terms 
of this collective group consciousness. The first step is to develop a Goal-Oriented 
Knowledge Ontology that can be used by the Cognitrons to evaluate their own goals 
and objectives in light of the collective goals and objectives of the entire SELF. 
Figure 5.12 illustrates the SELF Goal-Oriented Knowledge Lower Ontology.

In the ACNF, one of the functions of the Mediator, or Artificial Prefrontal 
Cortex is to manage this Group Consciousness by correlating LTM Information 
Fragments with the ongoing real-time Cognitive Consciousness comprised of 
behaviors, cognitive processes, current goal and objectives, emotions, contextual 
knowledge, etc. The Metacognitive and Metamemory processes correlate all of this 
information and send information to the reasoning processes and broadcast rele-
vant information to the Cognitrons currently operating in the system. Figure 5.13 
illustrates this process.

In order for the collective group consciousness to understand and make use of 
cognitive information from the collection of Cognitrons operating within the ACNF, 
capturing and relating the context of cognitive information is crucial, for it forms 
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that causal connectedness between the Information Fragments each Cognitron is 
processing and their relevance to other Cognitrons, and to past experiences captured 
in LTM.

5.6  Emotional Memory

As was discussed earlier, memories about emotional situations are often stored in 
both Explicit and Implicit LTM systems. Figures 5.14 and 5.15 illustrate the basic 
structure for the AIS Emotional Memories. Figure 5.16 shows the structure for stor-
age of emotional memories and Fig. 5.17 illustrates construction/retrieval of emo-
tional memories.

Figure 5.16 illustrates a high-level comparison of the AIS Artificial Central Nervous 
System with the human central nervous system. The Emotional Memories are based 
on Dr. Peter Levine’s Autonomic Nervous System Trauma States [163, 167]. This 
provides the framework to map Levine’s Nervous System States into artificial system 
states that can be tied to Artificial Neural Emotions and Emotional Memories.
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This, combined with Emotional Cognitrons, provide the constructs for artificial 
emotional control, as illustrated in Fig. 5.17. Combined, these provide the Cognitive 
Processing and Cognitron environment to allow artificial neural emotions and 
emotional learning within the SELF.

5.6.1  SELF Artificial Autonomic Nervous System  
States and Emotional Memories

Just as the amygdale and hippocampus are involved in implicit and explicit emo-
tional memories, respectively, the ACNF and the Cognitron Coalitions become 
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emotionally aroused when they form semantic and episodic memories about situations 
that cause “stress” within an artificial neural system. Stress situations may involve 
a loss of resources, new data environments that are unfamiliar or new interfaces that 
are introduced into the environment. These cognitive representations of emotional 
situations better referred to as memories about emotions rather than emotional 
memories.

In human emotions, emotional arousal often leads to stronger memories. This is a 
statement about explicit memories involving emotional situations (memories about 
emotions). The effects of emotional arousal on explicit memory are due to processes 
that are secondary to the activation of emotional processing systems in the ACNF. 
For example, in a situation of danger (say in an artificial neural system controlling 
a weapon system), processing of threatening environment stimuli would lead to the 
activation of the active cognitive emotion Cognitrons within the ACNF, which, in 
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turn, would transmit information to neural structures within the infrastructure of the 
system and system network. Activity in these areas would be detected by the cogni-
tive coalitions and would lead to increases in system emotional arousal (due to 
activation of modulation) within the neural structure that leads to the release of 
cognitive problem, solution, search, and emotion Cognitrons. The transmittal of 
informational content as well as emotional context allows information construc-
tion/retrieval performance to be greatly enhanced, allowing for “cognitive economy” 
within the artificial neural systems.

5.6.2  SELF Artificial Autonomic Nervous System States

Figure 5.18 illustrates the Autonomic Nervous System States described by Dr. Peter 
Levine [163]. However, the descriptions provided have been revised to fit within the 
context of the overall SELF and the ACNF. These descriptions are “fuzzily” encoded 
within the Information Fragments and within the Cognitive Consciousness.

These provide the artificial neural emotional states that correspond to system 
states and are stored, along with data and information to allow rapid retrieval and 
transmittal within the overall cognitive framework when similar situations present 
themselves for analysis and problem solving.

0: Base State: System is calm, current cognitive Cognitrons can easily respond to 
input (external interfaces). The artificial neural system is in a state of Pendulation 
(the SELF ACNF is in a natural rhythm supporting the basic process of contraction 
and expansion of system resources, corollary is the movement between tension and 
relaxation or inhalation and exhalation in human autonomic systems).
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1: Mild Stress: Active, heightened state of Cognitive Awareness. The SELF ACNF 
will allocate an increased number of Cognitrons in order to solve the current situ-
ation. Actual evolution takes place in this state as the Cognitive Consciousness 
collects information and makes inferences. Inferences about the emotions con-
nected with the situation are categorized and stored in Emotional Memory, while 
the informational content is stored in Spatio-Temporal Memories. Short-term 
emotional responses are stored in the STM for processing by Analyst Cognitrons 
for possible immediate response.

2: High Stress: A hyper-alert, panicky state that in humans provokes fight or flight 
responses. In the ACNF, it invokes a massive creation of Reasoner Cognitrons, 
as well as a massive increase in messaging Cognitrons to broadcast the emo-
tional situation and information to as large a population of Cognitron Coalitions 
as possible. This promotes rapid thoughts and evolution of Cognitrons, and 
causes rapidly changing and extreme artificial neural emotions. This happens in 
an extreme situation when the system is in jeopardy of mission failure of shutting 
down completely. In this state it will consume large amounts of system resources. 
Emotional Memory will include and predict the need for system resources 
required for problem solving should the situation arise again.

3: Mild Trauma: The heightened feeling of panic and hysteria (in neural system 
terms) is still present, however it is now an underlying emotion and the system 
appears to be in a dormant state, not able to find a solution to the problem at 
hand. It human terms, this state is appropriate for a situation that might need to 
be passive emotions, i.e., after a trauma when it is important to rest and gather 
one’s energy for a sudden outburst. In the ACNF, this is facilitated through an 
increased burst of genetic algorithms [36] that search every possible solution 
space (hypotheses generation) in order to provide an evolved solution that was 
previously unavailable and then allows a sudden burst of activity to provide mis-
sion solutions.

4: Severe Trauma: The artificial neural system is perceived dormant or shut down. 
There is a lack of cognitive activity and Emotion Cognitrons are suppressed in 
this state. There are eruptions of activity like those in State 3 and flashes of 
extreme evolution similar to State 2. This state is appropriate when the perceived 
threat to the system (either internally or externally) is overwhelming. This may 
occur in the ACNF when all external interfaces are unavailable and the system is 
devoid of input and no solution is imaginable within the current emotional and 
information states within the system memories. This causes a disconnection of 
the Cognitron from its current Emotional Memory and a flurry of evolutionary 
activity is required to allow solution spaces to be evolved without emotional 
influence that could interfere with the evolution of a possible solution space. 
When solutions are available, neural connectivity to the rest of the system is 
reestablished and a new set of neural emotions and Emotional Memories are 
established and new neural pathways are established and “remembered.”

The use of Emotional Memories within the ACNF provides the constructs and 
mechanisms for rapid retrieval of memories as well as rapid broadcast of contextual 
information unavailable with non-emotion based cognitive systems.
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5.7  Memory Recall in the SELF: Memory Reconstruction

As discussed above, the SELF must be able to store and recall (reconstruct) complex 
sequential patterns. We have discussed the episodic and semantic memories and the 
need for the SELF to demonstrate these memory properties within the SELF’s cog-
nitive domain for a large number of spatio-temporal memory patterns (episodes), 
given only a simple example or representation of such a pattern (a partial memory). 
The SELF’s cognitive system must be able to construct memories from information 
fragments without significant interference, as well as exhibit similarity- based cate-
gory generalization described as semantic memory properties in humans [146].

5.7.1  Constructivist Memory Theory

In order to design, develop, and implement the SELF to be truly autonomous, it 
must be provided with dynamic memory abilities [57]. Memories are typically 
classified into three different types: Sensory, Short-Term, and Long-Term. Each 
memory type has several instantiations, dealing with different types of information 
[15]. The SELF’s cognitive processes are based on Constructivist Learning (which 
will be discussed in Chap. 7), in which the ACNF cognitive learning processes are 
a building (or construction) process in which the SELF’s cognitive system builds 
internal illustrations of its learned knowledge-base, based on its experiences and 
personal interpretation (fuzzy inferences and conceptual ontology [191, 204]) of its 
experiences. The SELF’s Knowledge Representation and Knowledge Relativity 
Threads [71], within the SELF’s cognitive system memories are continually open to 
modification, and the structures and linkages formed within SELF’s short-term, 
long-term, and emotional memories [77], along with its Knowledge Relativity 
Threads (KRT) [72], form the bases for which knowledge structures would be cre-
ated and attached to the ACNF memories, which are stored as Binary Information 
Fragments [85] as discussed in previous chapters.

5.7.2  Artificial Memory Reconstruction

Given that the SELF’s memories are not stored as database files, but as Binary 
Information Fragments with Knowledge Relativity Threads that provide contextual 
and meta-information, memory recall, similar to humans, is a process of recon-
structing the memory, based on topical maps that map the topic or subject to be 
“remembered” into the Cognitive Conceptual Ontology (CCO) and Information 
Base to find those information fragments that are relative to the topics(s) to be 
pulled, associated, integrated, and presented as a memory to the SELF’s conscious 
processes. The process outlined below illustrates the memory reconstruction 
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process (see Fig. 5.19) [68]. Figure 5.20 illustrates an example of the process of 
building a Short Term Memory construction.

 1. For each memory reconstruction node from LTM, compute the total contextual 
relativity weights from the current set of Binary Information Fragments associ-
ated with the memory reconstruction node. These contain Knowledge Relativity 
Threads related to the concepts involved it the memory reconstruction:

 y i t j jix W
t, = ∈Σ Γ  (5.1)

 2. Normalize the values from each Topical Map that relate to a concept within 
the Conceptual Ontology, related to LTM Binary Information Fragments. i.e., 
we find the maximum value above and divide by all the individual values by 
the greater of the maximum and the F-matrix threshold F

tΘ . This is done to 
ensure that the memory feed-forward signals are not amplified in subsequent 
normalization steps to avoid catastrophic interference in the memory reconstruc-
tion process:
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 3. Analogous to step 1 – only for Short Term Memories:
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 4. Analogous to step 2 – only for Short Term Memories:
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 5. The memory reconstruction process is an iterative process (assessing whether 
the reconstruction process meets the conscious memory’s requirements and con-
straints). Here, the Knowledge Relativity Threads from LTM and STM are put 
through filters to produce a generalization gradient for their relativity to the 
memory to be constructed, based on the Semantic, Self-Organizing Topical 
Maps, utilizing adapted gravitational theory [71]. This gives them membership 
values between 0 and 1:
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 6. In step 6, we look for those memory fragments that are most relevant within the 
context of the Conceptual Ontology and Information Base:
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 7. Once we have all of the Binary Information Fragments from LTM and STM that 
are relevant, given the Topical Maps that may be relevant, we look for those 
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Topical Maps that make the most sense, given the strength of their membership 
functions for each set of combined ST and LT memories. Again, this is based on 
the SELF’s current CCO:

 
p k t j CO j tmax X, , ,= ≤ ≤∈ 1 k Q

 (5.7)

 8. This is in the process in case of an “unexpected” result, based on cues from pro-
cedural, emotional and spatio-temporal memory creation. This triggers if the 
actual combined memory is unexpected, given the current temporal context of 
the SELF’s past experience and clues. This may be an inference for a new con-
cept not currently in the SELF’s CCO. In this case, we get a compressive non- 
linearity that maps the required information into a new concept within the CCO:
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 9. Finally, we simply choose the winners of the nodes and provide the constructed 
memory out to the SELF’s Cognitrons for use by the SELF’s conscious pro-
cesses and Cognitrons:
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5.8  Discussion

We have provided the architecture and methodologies for artificial memory encoding, 
storage, and reconstruction. This provides the SELF with the abilities to process, 
encode, and retrieve information (memories) similar to human memory processing. 
These architectures and processes are only necessary if the SELF has the capabili-
ties of human-like learning and reasoning, along with an artificial consciousness 
that allows integration, control, and management of all of the SELF’s cognitive 
capabilities. The next chapter will discusses and describe an architecture and 
framework for Artificial Consciousness within the SELF.
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To develop “Artificial Consciousness” for a SELF requires investigation and 
understanding of what it means to be conscious. The textbook definition of 
 consciousness is:

Knowing and perceiving; to have awareness of surroundings and sensations and thoughts; 
showing realization or recognition of oneself and ones surroundings.

Another view of consciousness is to be in total control of one’s mind; in control 
of life and circumstances. Part of the notion of being conscious is to be able to 
 perceive the world around you. Consciousness is ability to understand and react to 
your reality; your environment. Our conscious mind has an internal map of our 
experiences and our emotions, and affects our reactions to external stimulus or 
information. Our experiences assist in determining our decisions, our strategies, and 
in turn affect the way we perceive and sort incoming information and the way we 
store and remember.

A prerequisite for a SELF consciousness includes methodologies for perceiving 
its environment, take in available information, make sense out of it, filter it, add to 
internal consciousness, learn from it, and then act on it. Here, we describe Artificial 
Neural Perceptrons as the mechanisms to provide “perception” characteristics to a 
SELF. Information travels through the SELF on the backs of perceptrons which 
coagulate to form various granular cognitive thoughts, perceptions, and concepts 
known as Cognitrons. Cognitrons communicate with each other to form an artificial 
“collective consciousness” within a SELF. Information is gathered and sorted 
(filtered) via Knowledge Relativity Threads (KRT) which build system context and 
knowledge corpus while FUSE-SEM topical maps provide a SELF the internal 
 formation of knowledge density that help a SELF decide what information is rela-
tive to things the SELF already knows, or has learned about and remembered (stored 
as memories).

Chapter 6
Artificial Consciousness
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6.1  Artificial Neural Cognitrons

Theory into human consciousness postulates that human cognition is implemented 
by a multitude of relatively small, special purpose processes, almost always uncon-
scious [87]. These processes are autonomous and narrowly focused. They are effi-
cient, high speed, and make very few errors because their purpose is narrowly 
focused. Each of these human processes can act in parallel with others. In a SELF 
ACNF, this is accomplished with fuzzy-neural perceptrons (Cognitrons) [88]. Each 
Cognitron is accomplished through the use of codelets; small pieces of code that 
each performs one specialized, simple task. Codelets play the role of waiting for a 
particular type of situation to occur and then acting upon it per its own specializa-
tion. These Cognitron codelets are miniature fuzzy-neural structures each with a 
specific purpose and facilitated by well-defined constraints, and are designed to 
adapt or analogously learn and evolve. As mentioned earlier, the ACNF provides 
perceptrons access to short and long-term memories and have the ability to com-
municate with other codelets as needed. Hence, in human cognitive theory, codelets 
can be thought of as cell assemblies or neuronal groups [58].

In order to initiate artificial consciousness within a hybrid, synthetic cognitive 
neural structure, it is necessary, like in the human brain, to create an architecture 
that provides a constructive neural environment where network learning algorithms 
extend the neural architecture as needed [148]. This facilitates a massively parallel, 
highly interconnected network of loosely coupled, relatively simple processing 
Cognitrons, called “experts,” in a hybrid, fuzzy, genetic neural system of “M expert” 
architecture [87]. The purpose for this constructive cognitive processing environ-
ment is to provide a hybrid, artificial neural environment that is adaptable to a vari-
ety of classes of operations:

• Language Processing
• Signal Detection and Processing
• Sensor and Information Fusion
• Inductive, Deductive, and Abductive Reasoning

The ACNF model, described in Chap. 4, suggests a number of possible special-
ized roles within the ACNF for artificial emotions and artificial cognition necessary 
to produce motivations and goals, and to facilitate learning within the SELF via 
ACNF Cognitron development. Each of the various components of the ACNF, per-
ception, attention, behaviors, expectations, and interactions, are described below:

Perception: for perception, sensory stimuli (both external and internal inputs) is 
received and interpreted by the perception processes, providing meaning and con-
text for the sensory inputs. There are several perception processes within the 
Artificial Cognition subsystem [69, 80].

 (a)  Early Cognitive Perception: Here input arrives via the sensors. Multiple 
specialized perceptrons attach to the sensory inputs and extract those features 
relevant to their specialty. If features are extracted, each perceptron will broad-
cast observations, analyses, and thought processes onto the Artificial Cognition 
processes.

6 Artificial Consciousness
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 (b)  Cognitron Coalition: it is possible for multiple perceptrons to be activated and 
utilized for a given set of input from the sensors. The Attention Manager within 
the Artificial Prefrontal Cortex (the Mediator) forms coalitions of perceptrons 
known as Cognitrons, and facilitates convergence from the different sensory 
information, along with its context. In this process, relevant emotions and pos-
sible emotional memories are recognized and identified along with the objects 
and contextual information from the various memory systems within the ACNF. 
This emotional reaction to external inputs may entail a simple emotional 
response based on a single Cognitive Emotional Cognitron (CEC), or it may 
involve a very complex emotional memory or response that requires additional 
convergence of several CECs.

 (c)  Cognitive Preconscious Buffers: The perceptions gained from processing of 
external sensory inputs, along with its meaning and context, are stored in work-
ing memory, called preconscious buffers, before the information is sent on to 
the Artificial Cognition subsystem. Depending on the type of sensory informa-
tion, these buffers could involve spatio-temporal, spatio-visual, auditory, or 
other types of information. Emotions and emotional memories may be part of 
this preconscious perception, depending on what features and triggers are 
extracted and discovered. These emotions, memories, and contexts are part of 
the preconscious perceptions stored in the preconscious buffer memories that 
are transferred to the Artificial Cognition processes during each cognitive 
development cycle.

 (d)  Cognitron Associations: The Artificial Cognition processes utilize the incom-
ing Cognitrons, along with the preconscious buffer memories/information as 
cues for creating cognitive hypotheses to provide reasoning and inferences 
about incoming sensory information. This includes emotional and contextual 
information. The Artificial Cognitive processes form local Cognitron associa-
tions from information retrieved from the transient episodic memories and the 
long-term associative memories [13]. Emotional memories and emotional cues 
are utilized in order to add emotional context that aids in creating the local cog-
nitive associations. These local associations contain recorded logs of Cognitrons 
past emotions and emotional memories that are contained in the associated situ-
ations close to or coincident with the sensory input hypotheses.

 (e)  Cognitron Competition: “Attention” Cognitrons bring relevant and/or urgent 
events to the Artificial Consciousness processes. These Attention Cognitrons 
search the long-term memories, based on input from the Metamemory pro-
cesses that information may exist in long-term memories about the subject, 
topic, or hypothesis currently being processed. As information and context are 
retrieved, it is possible for Cognitron coalitions to be formed, some of which 
may compete for access to the consciousness processes. This competition may 
include a number of Attention Cognitron coalitions, including coalitions formed 
during previous consciousness cycles. It is possible the priorities assigned to 
coalitions are influenced by the emotional responses, trauma states, and/or 
other emotional memories. A strong affective emotional response will 
strengthen a coalition’s priority and therefore increase the chances of getting 
access to the Artificial Consciousness processes.
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 (f)  Broadcasting Perceptron Consciousness: A Cognitron coalition, once it has 
gained access to the Artificial Consciousness processes, has its contents broad-
cast within the ACNF. This coalition may include an Attention Cognitron, along 
with its coalition of relation Informational Cognitrons, which carry information 
content, along with informational context. This ‘consciousness broadcast’ will 
contain the complete contents of this consciousness object, including the affec-
tive (emotional) information. This consciousness broadcast updates the percep-
tual memory, including the emotional content, which may lead to new emotional 
memories. The stronger the affective information, the stronger the emotional 
memories and triggers that are encoded into memory. The Transient Episodic 
Memories are also updated with the contents of the current consciousness 
object. During long-term memory cycles, the contents of the episodic memory 
are consolidated and stored as long-term declarative memory. Procedural 
Memory may be updated, modified, or reinterpreted, depending on the strength 
of the affective portion of the consciousness object.

 (g)  Cognitron Resource Management: Behavior Cognitrons respond to the 
Consciousness Broadcasts. Behaviors are controlled by information from the 
Consciousness Broadcast that drives the creation of Attention Cognitrons. One 
type of Attention Cognitron is an Expectation Cognitron that may be created 
due to an unexpected hypothesis or result from a previous Consciousness 
Broadcast. In this case, a Cognitron Coalition may be created in order to handle 
the unexpected situation. This coalition may consist of many types of 
Cognitrons, allowing the Artificial Consciousness to handle resource manage-
ment by recruiting resources through the creation of Cognitron Coalitions. The 
emotional, or affective, content of the Cognitron Coalitions will affect the 
attraction of relevant resources, including processor utilization, memory avail-
ability, and creation of other coalitions, in order to handle the current perceived 
situation.

 (h)  Cognitron Action Selection: Based on the reactions, analyses, hypotheses, 
and other information provided by the Artificial Consciousness processes, 
the Behavior Processes select a behavior, or action, driven by both conscious 
and unconscious goals carried within the ACNF. This may be the result of a 
current situation, or a previous situation that has gained higher priority 
within the Attention Manager. Again, the action selection can be heavily 
influenced by the emotional content of the coalitions. The relationships 
between previous, current, and possible future behaviors affect activation of 
actions, as does the residual activation levels (priorities) from the various 
choices of actions.

 (i)  Cognitron Action Activation: Based on the selection of action(s), the 
Behavior Cognitrons set into motion a chain of actionable events that may 
drive the SELF to perform both internal and external tasks in order to meet its 
current goals. This will also include a set of Expectation Cognitrons whose 
task it is to monitor the actions performed in order to provide success/failure 
information to the Artificial Consciousness processes, based on the expected 
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results. The success or failure information may create new hypotheses and 
Cognitron coalitions in order to deal with this new information from the 
Expectation Cognitrons.

The Cognitrons provide the ACNF with the ability to mimic human reasoning in pro-
cessing information and developing knowledge. Figure 6.1 illustrates the ACNF 
Cognitron Artificial Cognition Infrastructure that drives the coalitions and provides the 
infrastructure for the hybrid neural processing environment. These Cognitron solution 
coalitions, in the end, will create additional memories within the ACNF, including 
emotional memories, based on the overall response of the system to the current situa-
tion. The Solution Domain is the front end processor of data and information in which 
solutions are matched to incoming data. Known solutions (answers to questions or 
understanding incoming situational information) may require minor adjustments  
to parametric values and memories, based on subtle changes to known solutions. 
The latency requirements in this domain are very short. Unsolved or inadequately solved 
problems or situations are moved to the Evolution Domain for further processing.

6.2  The SELF Mixture of Experts Architecture

The SELF Mixture-of-Experts architecture allows dynamic allocation of perceptron 
objects through a divide-and-conquer principle. The neural infrastructure employs 
genetic programs which possibilistically “softly” divide the input space into over-
lapping regions on which the perceptron “experts” operate [58].
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Assuming at time t, there are M local perceptron experts at any given subsystem 
level of the SELF. Each of the M experts looks at a common input vector x to form 
an output, ˆ ( ) ( ),y x g x j Mj j = …1 . g xj ( )  is a gating function which weights outputs 
of the perceptron experts to form an overall Cognitron output:
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Thus, the ith Cognitron’s influence is localized to a region around mj, with its 
sphere of influence determined by Σj. The formulation for estimating the Cognitron’s 
“expert” network parameters is given by:
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6.2.1  Dynamic Cognitron Growing and Pruning

The purpose behind dynamic allocation of Cognitron experts within the SELF is to 
provide complete flexibility in the system as new data/information classes are 
encountered within the ACNF’s Conceptual Ontology. In the SELF dynamic sys-
tem, it is expected that growing and pruning changes are slow with respect to time, 
since the decision to add complexity or remove capability should be based on infor-
mation that has been learned over many iterations of the system [87, 88, 178]. The 
dynamic error estimate for Cognitron expert is:
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If the error estimate corresponding to a particular Cognitron expert increases 
beyond a given threshold, the need for an additional Cognitron expert is detected. 
The dynamic procedure for adding a Cognitron expert is:

• Initialize the mean vector corresponding to the new Cognitron expert to be equal 
to the mean vector of the corresponding expert to be split.

• Add a small random perturbation to the two means.
• For a window of length T of input classes identified, make parametric updates to 

all the Cognitron experts except the expert being split and the new Cognitron 
expert.

• For a window of length T of input classes, if the posterior hj, corresponding to 
one of the new Cognitron experts is the highest among the posteriors of all the 
experts for a given signal class, make parameter updates for this Cognitron expert 
also.

The window length T is chosen in such a way to separate the 2-means space. 
After this window length of T data samples, the two Cognitron experts become part 
of the normal “Mixture-of-Experts” system. Pruning is performed by monitoring 
the parameter αj. When αj becomes small, the corresponding Cognitron expert is 
pruned from the system. Figure 6.1 illustrates the connectivity between components 
of the overall SELF. The individual cognitive processes shown in Fig. 6.1 (e.g., 
behavior, perceptron, cognition, etc.) are driven by small, single task Cognitrons 
[54–56].

6.3  Artificial Metcognition: Cognitive Regulation

Recent advances in cognitive computing suggest that computers can do as well as 
humans, even across multiple information sources and information types [50]. This 
work by Crowder and Friess established the constructs within an ACNF to provide 
Metacognitive and Metamemory processing concepts similar to how the human 
brain operates to process, categorize and link information. Metacognition provides 
the SELF with a sense of Self-Analysis, or Introspection, allowing the system to 
“think about what it thinks.” Metamemory is a concept of an Artificial Intelligence 
system’s memory capabilities and strategies that can aid in memory representation, 
retention, mining, retrieval, as well as the processes involved in memory Self- 
Monitoring. Metamemory constructs for an Artificially Intelligent system has 
important implications about how the system learns and uses memory. For example, 
the system can make a judgment on whether it has enough information to complete 
a mission, known as “judgments of learning.” Presented here will be the derivation 
and application of Metacognition and Metamemory concepts to real-time system 
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utilizing Artificial Intelligence and Cognitrons, including capture and utilization 
of Emergent Behavior, or concept derivation, allowing a system to preserve its 
own attention, avoiding interruption and distraction during the analytical process 
[41, 42].

6.3.1  Artificial Cognition with Metacognition

Metacognition, or Knowledge of Cognition, refers to what a system knows about its 
own cognition or about cognition in general. In short, it describes the system’s abil-
ity to think about how and what it thinks. It includes three different kinds of meta-
cognitive awareness: declarative, procedural, and conditional knowledge [93, 178]. 
They are described as:

• Declarative Knowledge: refers to knowing “about” things,
• Procedural Knowledge: refers to knowing “how” to do things, and
• Conditional Knowledge: refers to knowing the “why” and “when” aspects of 

cognition.

We can classify Knowledge of Cognition into three components [47, 48]:

• Metacognitive Knowledge: (also called Metacognitive awareness) is what the 
system knows about itself as a cognitive processor [108].

• Metacognitive Regulation: is the regulation of cognition and learning experi-
ences through a set of activities that help the system control its learning [156]. 
This may be based on its understanding of its own “knowledge gaps.”

• Metacognitive Experiences: are those experiences that have something to do 
with the current, on-going cognitive endeavors (current mission).

As in humans, we assume that direct inferences are necessary for cognitive pro-
cessing and Metacognition [94]. For a normal, healthy system, if a cognitive func-
tion, F, activates a functional cognitive area A, it always activates A. We utilize this 
phenomenon to create an initial Conceptual Ontological Framework (Fig. 6.2) of 
cognitive instances for the SELF.

Each cognitive instance contains expectation derived from experiences the 
system has had [158, 159]. We can deconstruct the cognitive instance expecta-
tions, based on the concepts and skills that drive the expectations, as depicted in 
Fig. 6.3.

The nature of Metacognition is to understand the structure of one’s own cogni-
tive processes, i.e., the ability to think about what we think. To an AI system, the 
beginnings of Metacognition are founded in understanding that each action the sys-
tem might take is broken into sub-actions, each of which may have a separate and 
different contexts (see Fig. 6.4).

As in humans, we assume that direct inferences are necessary for cognitive 
processing and Metacognition [94]. For a normal, healthy system, if a cognitive 
function, F, activates a functional cognitive area A, it always activates A.  
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We utilize this phenomenon to create an initial Conceptual Ontological Framework 
(Fig. 6.2) of cognitive instances for the SELF.

Each cognitive instance contains expectation derived from experiences the sys-
tem has had [157]. We can deconstruct the cognitive instance expectations, based on 
the concepts and skills that drive the expectations, as depicted in Fig. 6.3.

Here we define the structures and methodologies required to provide 
Metacognition and Metamemory capabilities to the SELF [71]. Such capabilities 
are necessary for autonomous systems in order to provide the capability for Self- 
Assessment and Self-Diagnosis [82].

6.3.2  Metacognition: Cognitive Self-Awareness and Assessment

In order to create cognitive self-awareness and assessment in the SELFs, a formal 
cognitive neural framework is required for determining levels of cognitive granular-
ity and to formalize methodologies for assessing the closeness of cognitive relation-
ships within the SELF. This is facilitated through the ACNF described in Chap. 4, 
which is a hybrid, fuzzy-neural processing system using genetic learning algo-
rithms. The ACNF architecture is based on a mixture of neural structures that add 
flexibility and diversity to overall system capabilities (as explained in Sect. 6.2).  
In order to provide an intelligent processing environment for the SELF that is 
 continually adaptable, we believe the SELF must possess the notion of artificial 
emotions that allow the processing environment to “react” in real-time as the systems 
outside the environment change and evolve recursively as recombinant knowledge 
assimilation [157].
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These constructs provide the necessary components for the SELF to possess 
cognitive self-awareness and self-assessment processes. Figure 6.5 illustrates the 
information flow through the ACNF Metacognitive processes.

6.4  Artificial Metamemory: Cognitive Understanding  
and Learning

Metamemory: is the concept of an AI system’s memory capabilities and strategies 
that can aid in memory representation, retention, mining, and retrieval, as well as 
the processes involved in memory self-monitoring [156]. A system’s self-awareness 
of memory has important implications about how the system learns and uses mem-
ory [94]. For example, the system can make a judgment on whether it has enough 
information to complete a mission, known as “judgments of learning” [81].

Metamemory concepts for AI system resemble cognitive map constructs that 
utilize registries for hybrid topical map assimilation [153]. The Metamemory regis-
try allows Cognitive Creation and Discovery within the overall ACNF and drives 
the conscious analytic inference engines of the system. Figure 6.6 illustrates these 
Cognitive Creation and Discovery Actions.

The Metamemory Registry has the following properties:

• It has a repository that contains all types of cognitive maps.
• It has a registry that contains metadata describing cognitive topics and cognitive 

maps; much like the library’s card catalog contains information describing the 
published content on its book shelves.
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• The Cognitive registry-repositories work together to offer a unified prefrontal 
cortex, much like multiple libraries can participate in a cooperative network and 
offer a unified service.

This APC (discussed earlier) registry-repository provides governance capabili-
ties that enable definition and enforcement of cognitive policies governing the con-
tent and usage of the cognitive and topical maps by the Cognitron framework across 
the SELF enterprise architecture. The cognitive registry-repository contains all 
Metacognitive and Metamemory constructs for cognitive components available 
within the SELF, multi-ISA framework.

The registry-repository framework provides discovery capabilities that are exten-
sible and can accommodate the simplest to the most complex domain-specific cog-
nitive discovery queries among the Cognitrons.

• Specifically, its discovery queries do not need to be predefined.
• Instead, it provides an ad hoc query syntax supporting complex predicates that 

can be combined using possibilistic logic.

As more and more cognitive components are reused by Cognitrons, the task of 
tracking the network of dependencies between cognitive topics becomes more chal-
lenging and significant. This is another challenge that is made easier by the SELF 
ACNF Metacognitive and Metamemory registry-repository where inter-topical 
dependency information can easily be managed as relationships between cognitive 
maps. A cognitive registry-repository provides a set of standard relationship types, 
but also allows the definition of additional relationship types based on specific 
requirements within the overall Metacognitive framework.

The nature of these Metacognitive and Metamemory frameworks is that the SELF 
Cognitrons evolve over time as the SELF learns and evolves. Cognitive components 
evolve over time for a variety of reasons, as information is learned and the system evolves. 
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A cognitive component’s evolution may involve changes in its topical references and/or 
interfaces. Changes to a cognitive interface need much more careful management 
because of the potential impact to existing Cognitrons. These changes will require a new 
version of the cognitive maps to be deployed, while maintaining the older cognitive 
maps until the SELF Cognitrons have had time to migrate to the new version according 
to their own needs and schedule, based on current analytical of mission drivers. New 
versions of a cognitive or topical map or a cognitive component also typically require 
publication of corresponding new versions of its cognitive information artifacts, much 
in the way new memories and thoughts must be categorized, catalogued, and correlated 
within the human brain.

The Metacognitive and Metamemory registry-repository provides a cognitive 
change notification capability that allows interested Cognitrons to create subscrip-
tions to events within the registry-repository that may be of interest to them. Such a 
capability allows a Cognitron to be flexible enough to express precisely the types of 
events that are of interest to the SELF.

6.4.1  Cognitive Visibility and Governance

The SELF Metamemory system must provide cognitive visibility and governance 
across the entire ACNF framework allowing the SELF to create and process 
Metacognitive and Metamemory component models and store them. This enables 
cognitive governance within the ACNF Multi-Cognitron framework. This allows 
transparency into the system’s cognitive semantics and allows conceptualization 
across the system of cognitive metadata. These cognitive registry-repository sys-
tems allow easy access to cognitive topics and maps across the system, and facilitate 
knowledge gap analysis. Major functions of the overall Metamemory and 
Metacognitive systems are:

Cognitive Provisioning: the ACNF framework provides Cognitron interfaces and 
Metacognitive and Metamemory Metadata. This allows seamless Cognitive 
Integration across the SELF. The ACNF mediator allows Cognitive Metadata to be 
utilized in one central location. This enables the reuse of Cognitive and Memory 
artifacts and provides end-to-end Cognitron support. It provides governance of 
Metacognitive and Metamemory definitions within the system.

Cognitive Process Integration: The Metacognitive and Metamemory information 
defined in the cognitive registry-repository is utilized to allow the system to  create 
“what if” cognitive scenarios to facilitate self-assessment. These scenarios allow the 
system to correlate information and allow cognitive integration in a heterogeneous 
knowledge environment. This also promotes cognitive knowledge collaboration 
among the Cognitrons. All of this provides support to allow the system to define the 
cognitive integration scenarios.

Cognitive Composition: Cognitive Composition tools are provided to allow the 
 system to compose queries of registry-repository information to discover new cog-
nitive and memory components. This facilitates cognitive composite development 
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within the overall SELF cognitive framework. These tools reduce risk in 
 cognitive discovery and allow easy knowledge discovery, consumption, and 
composition.

Figure 6.7 provides a Metacognitive and Metamemory Cognitive registry- 
repository Use Case Diagram, illustrating the various types of Cognitrons utilized 
within the ACNF. This Use Case Diagram describes the functions each type of 
Cognitron contributes to the overall Metacognitive and Metamemory information 
flow within a SELF.

6.5  Metacognitive and Metamemory Structures

Metacognitive and Metamemory Self-Awareness and Self-Assessment rely on the 
system’s ability to pose “what-if” cognitive scenarios within its cognitive system. 
This requires argument structures that allow the SELF to pose hypotheses and deter-
mine the validity of these hypotheses. For this ability, we chose a Dialectic Argument 
Structure (DAS) described earlier.

The DAS provides the artificial consciousness methods to analyze and sort 
diverse information and cognitive clues that drive the Emotional Memory and 
Metamemory processes in general [78, 93]. As cognitive knowledge is gathered, a 
cognitive lattice develops and an aggregate possibility is computed for/against the 
hypothesis using output from the fuzzy inference engines to provide fuzzy member-
ship values of the support and rebuttal of the hypothesis [81]. This computation is 
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based on Renyi’s entropy theory, utilizing joint information membership metrics to 
generate a robust measure of hypothesis “possibility.”

Cognitron coalitions form Cognitron Hierarchies for each cognitive hypothesis 
(see Fig. 6.8). These Cognitron coalitions are part of an ecosystem that constantly 
has to adapt to the changing information and cognitive knowledge environment. 
The Cognitrons attributes that drive the DAS are:

• Cognitrons search for information over an irregular topology.
• Cognitrons compete and collaborate to increase their value; successes and fail-

ures are remembered.

Cognitrons evolve or die and exhibit different levels of consciousness.
Genetic Algorithms are used to evolve agents, maximizing the effectiveness of 

the cognitive ecosystem. In order to facilitate intelligent transmittal of learned emo-
tions and emotional context, Emotional Markup Language (EML) is utilized within 
the system for transmittal of emotional information, creating a Cognitive Social 
Intelligence, as depicted in Fig. 6.9.

6.6  Extended Metacognition: Artificial Locus of Control 
Within the SELF

Theories into human learning and cognition have led to much research into new 
methods and structures for Artificial Intelligence (AI) and, in particular the SELF, 
to learn and reason like humans. As discussed above, as we move toward a com-
pletely autonomous SELF, the ability to provide metacognitive capabilities becomes 
important [81] in order for the SELF to deal with entirely new situations within the 

Hypothesis
Cognitron

Dialectic
Agent (DA)

TA

DA
DA DA DA

DA

TA

Topical
Agent
(TA)

Topical
Agent
(TA)

- Developed for a specific subject area and/or mission need
- Finds most productive subject area to work on
- Recalls old arguments and evolves the lattice to maximize plausability

TA TA
TADialectic

Agent (DA)
TA

TA TA TA
TA

Dialectic
Agent (DA)

TA
TA TA TA

TA

- Based on a specific Dialectic Argument
- Finds the best hypothesis agent to work for
- Recalls old evidence and evolves evidence fuzzinessCo

m
pe

tin
g

Co
m

pe
tin

g - Searches a specific topic for evidence
- Finds the best Dialectic Agent to work for
- Evolves the topic and finds data sources for
 the FSSOTM

Ranked
Search Hits

Topic
Isogram

Self-Organizing Map

Fig. 6.8 The SELF metacognitive Cognitron hierarchy

6.6  Extended Metacognition: Artificial Locus of Control Within the SELF



www.manaraa.com

94

environment it may find itself (e.g., deep space, deep undersea). Here we discuss the 
theories and methodologies for Constructivist Learning (CL) processes that provide 
the methodologies to allow a completely autonomous SELF to understand, evaluate, 
and evolve its “Locus of Control [222].”

We discuss how the use of AI learning systems, like Occam [80] and Probably, 
Approximately Correct (PAC) (see Chap. 7) learning can be combined with 
Cognitive Economy concepts to provide this constructivist learning process to allow 
a Locus of Control evolution within the SELF to provide a fully autonomous, cogni-
tive framework that would be required for autonomous environmental interaction, 
evolution, and control.

In addition, provided are the mathematical constructs, based in Banach Spaces 
and Lebesque’s work in Bounded Variability, that will provide the basis for Cognitive 
Economy structures within the SELF, allowing the SELF to operate in a “Bounded 
Rationality” mode, similar to humans; allowing the SELF to function in new, 
unforeseen, and challenging environments it may find itself in. Natural intelligence 
filters out irrelevant information (either raw sensory perception information or 
higher-level conception information), and categorizes the problem representations 
to allow for maximum information processing with the least cognitive effort [85]. 
This work is based on the use of Cognitrons [57] which will represent the internal 
environment (its tasks, goals, and information) in terms of the reward values associ-
ated with different actions when those features of its abilities are active.

The SELF, always having bounded cognitive resources, would react to three 
aspects of Cognitive Economy to create a Bounded Rationality set of goals for a 
given set of Cognitrons generated to solve a particular problem or situation. These are:

 1. The size of the feature set – how many “features” are required to define the suc-
cess of each task

 2. The “fuzzy” relevance of each feature for the tasks
 3. The preservation of necessary distinctions for success in each task
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The SELF’s cognitive components would autonomously define, for each 
Cognitron, a Banach Space for that Cognitron’s goals and tasks and would then 
consider the set of Cognitron Banach Spaces as a set of bounded variations, the 
sequence of which (through Cognitron collaboration) produces an acceptable solu-
tion to the situation(s) or task(s) at hand.

The Cognitive Economy methods will be described, illustrating how these 
Cognitive Economy and Bounded Rationality concepts affect the overall learning 
aspects of the SELF. In addition, when considering autonomous SELFs, we must 
consider its need to interact and learn from its environment, and we have to ask 
ourselves “what is reality?” We have to establish how the SELF would interpret 
reality. One of the issues that humans deal with that assists in their understanding of 
reality and how they need to interact, is their concept of “Locus of Control.” Locus 
of control is a term in psychology that refers to a person’s belief about what causes 
the events in their life, either in general or in specific areas such as health or aca-
demics. Understanding of the concept was developed by Rotter [223], and has since 
become an important aspect of personality studies.

6.6.1  Artificial Locus of Control

Locus of control refers to the extent to which individuals believe that they can con-
trol events that affect them. Individuals with a high internal locus of control believe 
that events result primarily from their own behavior and actions. Those with a high 
external locus of control believe that powerful others, fate, or chance primarily 
determine events. Those with a high internal locus of control have better control of 
their behavior, tend to exhibit more political behaviors, and are more likely to 
attempt to influence other people than those with a high external locus of control; 
they are more likely to assume that their efforts will be successful. They are more 
active in seeking information and knowledge concerning their situation.

Locus of control is an individual’s belief system regarding the causes of his or 
her experiences and the factors to which that person attributes success of failure. It 
can be assessed with the Rotter Internal-External Locus of Control Scale (see 
Fig. 6.10). Think about humans, and how each person, experiences an event. Each 
person will see reality differently and uniquely. There is also the notion of how one 
interprets not just their local reality, but also the world reality [24]. This world real-
ity may be based on fact or impression.

Take a car accident as an example. There are two people who witness a car being 
hit by a motorcycle. The police at the scene are supposed to evaluate the facts to 
determine what has happened. The officer may use measurement tools that are sup-
ported by mathematical equations, to determine speed at impact or where impact 
occurred. The officer may measure skid marks or measure the distance between 
vehicles. The officer is gathering factual data. Let’s consider this juried evidence and 
legitimate evidence. When asked by the police officer, each human witness can recall 
the event as if they were watching it again, a step-by-step recount. Each person’s 
story likely has unique qualities depending on how they conceptualize the incident. 
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Eyewitness testimony is part of legal actions all the time. Even though each witness 
tells a slightly different story, all information and testimony is used in the ultimate 
decision. We know, by eyewitness testimony studies, that often times the recalled 
event is very different than the actual event. Let’s say in this example both people 
recalled the event similarly except the color of the car that hit the motorcycle. Perhaps 
even whether the car hit the motorcycle or the motorcycle hit the car recount differs. 
The fire truck blocks the view of each eyewitness so they cannot confirm the color of 
the car as they recount the event. Each person has had a legitimate experience even if 
they code the color of the car differently. Factually legitimate the car and bike col-
lided at a specific rate of speed at a specific location. Emotionally legitimate is the 
witnesses’ personal experience. To one witness the car was green to the other it was 
blue. Thus, with this incident we have three realities. Here, one of the facts that  
we can measure by juried tools and the reality of each of the players in the scene;  
all experiencing the same event but each in his own unique way. Each reality is 
legitimate.

For further thought let’s then consider Constructivist Psychology. According to 
“The internet Encyclopedia of Personal Construct Psychology” the Constructivist 
philosophy is interested more in the people’s construction of the world than they are 
in evaluating the extent to which such constructions are “true” in representing a 
presumable external reality [81, 85]. It makes sense to look at this in the form of 
legitimacies. What is true is factually legitimate and what is peoples’ construction 
of the external reality is another form of legitimacy. Later on we can consider the 
locus of control in relation to internal and external legitimacies or realities. You are 
correct if you are thinking that the SELF is not human and will not have human 
perceptions. The SELF will have ACNF Cognitrons which provide its own internal 
perceptions and realities. Thus, a mentor will be necessary. That mentor will need 
to understand the SELF as an artificial entity, and be able to understand the SELF in 
a human way, a human reality

6.6.2  Constructivist Learning

Constructive psychology is a meta-theory that integrates different schools of 
thought. According to the Vaihinger [208], people developed “workable fictions,” 

External Locus of Control

SELF cognitive system believes
that its behavior is guided by

external circumstances

Internal Locus of Control

SELF cognitive system believes
that its behavior is guided by its
Cognitron decisions and efforts

Fig. 6.10 SELF adapted 
Rotter locus of control scale
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which was part of his “As If” philosophy, such as mathematical infinity, or God. 
Alfred Korzybski [150], in his “System of Semantics,” focused on the role of the 
speaker in assigning meaning to events. This drove constructivist learning thought 
to reason that humans operated on the basis of symbolic or linguistic constructs that 
help navigate the world without having to contact it in any simple or direct way 
[85]. Postmodern thinkers assert that constructions are viable to the extent that they 
help us live our lives meaningfully and find validation in shared understandings of 
others [155]. We live in a world constituted by multiple realities social realities, no 
one of which can claim to be “objectively” true across persons, cultures, or historical 
epochs. Instead, the constructions on the basis of which we live are at best provi-
sional ways of organizing our “selves” and our activities, which could under other 
circumstances, be constituted quite differently.

For the SELF with Constructivist Learning, the SELF’s cognitive learning pro-
cess would be a building (or construction) process (which was explained earlier) in 
which the SELF’s cognitive system builds an internal illustration of its learned 
knowledge-base, based on its experiences and personal interpretation (fuzzy infer-
ences and conceptual ontology [191, 204]) of its experiences. The SELF’s 
Knowledge Representation and Knowledge Relativity Threads [71], within the 
SELF cognitive system memories would be continually open to modification, and 
the structures and linkages formed within the SELF short-term, long-term, and 
emotional memories [82], along with its Knowledge Relativity Threads [73], would 
then form the bases for which knowledge structures would be created and attached 
to the SELF memories.

One of the results of the Constructivist Learning process with the SELF would 
be to gradually change its “Locus of Control” for a given situation or topic, from 
external (the system needing external input to make sense, or infer, about its envi-
ronment) to internal (the SELF having the cumulative constructive knowledge- 
based of information, knowledge, context, and inferences to handle a given situation 
internally); meaning the SELF is able to make relevant and meaningful decisions 
and inferences about a situation or topic without outside knowledge or involvement. 
This becomes extremely important for completely autonomous SELF.

6.6.3  Bounded Conceptual Reality (Cognitive Economy)

Bounded rationality is a concept within cognitive science that deals with decision- 
making in humans [81]. Bounded rationality is the notion that individuals are lim-
ited by the information they have available (both internally and externally), the 
finite amount of time they have in any situation, and the cognitive limitations of 
their own skills. Given these limitations, decision making becomes an exercise in 
finding an optimal choice given the information available. Because there is not infi-
nite information, infinite time, nor infinite cognitive skills, humans apply their ratio-
nality after simplifying the choices available, i.e., they bound the problem to be 
solved into the simplest cognitive choices possible [224].
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Any SELF must suffer the same issues. An autonomous system, by definition, 
has limited cognitive skills, limited memory, and limited access to information. The 
Locus of Control concepts discussed earlier will assist the SELF in determining 
which situations can be handled internally vs. externally, but still in any situation 
there is limited information, time, and cognitive abilities. This is particularly true if 
the system is dealing with multiple situations simultaneously. In order for the sys-
tem to not become overloaded, we believe autonomous systems must employ strate-
gies similar to human bounded rationality in order to deal with unknown and 
multiple situations they find themselves in. This involves creating mathematical 
constructs that can be utilized to mimic the notion of bounded rationality within 
autonomous SELF.

For this we look to Banach Space theory, tied into Constructivist Learning con-
cepts [24] for an autonomous SELF. As concepts are learned and stored in the SELF 
conceptual ontology [191], Banach Spaces are defined that are used to bound the 
rationality choices or domains for that concept. As we “construct” these concepts 
and the Banach Spaces that bound them, the combination of Banach Spaces 
then defines the Conceptual Rationality for the Autonomous SELF. Figure 6.11 
illustrates this concept.

Fig. 6.11 SELF bounded conceptual reality computation
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These Banach Spaces that define the bounds for each learned concept are utilized 
when the SELF must reason, or perform decision making. When there are restrict-
ing limitations on time, resources (as determined by the resource manager, e.g., 
artificial prefrontal cortex), and available information, the bounds of these Banach 
Spaces would be tightened or loosened to allow the SELF to deal with multiple situ-
ations, or situations that are time critical. This, then, allows the SELF to decide what 
is a “good enough” solution to a given problem or set of problems, and to adjudicate 
between competing resources, priorities and overall goals.

The methods discussed here are initial concepts and methodologies for what we 
believe are essential cognitive skills that autonomous systems must have in order to 
deal with and survive in real-time extreme environments. As we push for systems 
that think, learn, and adapt, we must provide these systems with cognitive skills 
similar to human processes in order to be able to deal with and survive real-time 
situations they find in their environments. This is very preliminary work and much 
more remains in order to put these concepts into practice. Future books in this series 
will provide updates as the research continues.

6.7  Cognitive System Management

Many have put forth architectures that facilitate cognition, learning, memories, and 
information processing, but these are not sufficient to create a completely autono-
mous SELF. An overall SELF architecture framework, along with a knowledge and 
cognitive ontology are required in order to facilitate a fully autonomous, cognitive, 
self-aware, self-assessing SELF. Such a system must include architectures and 
methodologies for managing such cognitive processes. Described here is a SELF 
processing and management framework which within the SELF ACNF that pro-
vides for Memory, Decision, Rules, Learning, Reasoning, Decision, and Failure 
Management within the overall artificial cognitive processing architecture.

In order to understand the world we live in, we synthesize models that enable us 
to reason about what we perceive. We take in outside information that is available 
to us, usually from a variety of diverse sources like audio, video, text, etc. This 
information also comes from a variety of venues like news, entertainment, docu-
mentary, etc. Given the diversity of information types and sources, the information 
we receive does not have a consistent basis, but is riddled with fuzziness (or vague-
ness) and ambiguity; it is inexplicit and its context is often unclear. In fact, from the 
moment our brain functions at all, we begin the process of learning and managing 
the information we have learned; cognitive management. In order to provide the 
SELF with the abilities to autonomously process information and make decisions, 
the SELF’s Cognitive System Management must include:

• Memory Management
• Learning Management
• Decision Management
• Rules/Goals Management
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6.7.1  SELF Memory Management

In Chap. 5 we discussed the artificial memory system required to provide the SELF 
basic human memory processing, encoding, storage, and reconstruction capabilities 
(see Fig. 5.7) [68]. We saw that Explicit or Declarative Memory is utilized for stor-
age of “conscious” memories or “conscious thoughts.” Explicit memory carries 
those information fragments that are utilized to create what most people would 
“think of” when they envision a memory. Explicit memory stores things, i.e., objects, 
and events, things that are experienced in the person’s environment. Information 
stored in Explicit Memory are normally stored in association with other information 
that relate in some fashion. The more meaningful the association, the stronger the 
memory and the easier the memory is to construct/recall when you choose to. In the 
SELF, Explicit Memory is divided into different regions, depending on the type or 
source of information. This is because different types of information fragments 
within the SELF memories are encoded and represented differently, each with its 
own characteristics that make it easier to construct/recall the memories later when 
the SELF’s cognitive processing system needs the memories. In the SELF LTM, we 
utilize FUSE-CTXs and FUSE-SEMs [79, 80] to associate currently processed 
Information Fragments from the STM with memories stored in the LTM.

In order to facilitate self-evolution and memory management within the SELF, 
each cognitive subsystem, each Cognitron, each and every part of the system must 
be able to cooperate and collaborate with, and learn from every other part of the 
system. In essence, the combination of all of the Cognitrons within the SELF form 
a collective, or group consciousness that drives how the system learns, reasons, and 
behaves. In order to facilitate this collective group consciousness, there must be 
both memory management and memory sharing across the entire system. And while 
the system has a collective set of LTMs, these memories, their implications, their 
contexts, and their emotions must be broadcast, or transmitted, to each part of the 
system so that each Cognitron can evaluate how they are affected by learning and 
‘remembering’ that goes on in other Cognitrons. Figure 6.12 below illustrates the 
overall memory management architecture for the SELF.

The SELF’s overall system-level goals are constantly evaluated with the memory 
management structure, based on the SELF’s collective group consciousness (see  
Fig. 5.12). In the SELF memory manager shown above, one of the functions of the 
Mediator is to manage this Group Consciousness by correlating current long-term 
memory Information with the ongoing real-time Cognitive Consciousness comprised 
of behaviors, cognitive processes, current goal and objectives, emotions, contextual 
knowledge, etc. The Metacognitive and Metamemory processes shown in Fig. 6.2 
 correlate all of this information and send information to the reasoning processes and 
broadcast relevant information to the Cognitrons currently operating in the SELF.

In order for the collective group consciousness to understand and make use of 
cognitive information from the collection of Cognitrons operating within the SELF, 
capturing and relating the context of cognitive information is crucial, for it forms 
that causal connectedness between the each Cognitron is processing and their rele-
vance to other Cognitron, and to past experiences captured in the SELF’s LTM.
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6.7.2  SELF Learning Management

In order for a SELF to actually learn, we must provide a mathematical framework 
and foundation for learning. As humans we experience many types of information 
and have many different types of memories that allow us to experience, filter, learn, 
and then remember our experiences, both factual and emotional. Therefore we must 
provide a multitude of learning methods, procedures, and frameworks so that the 
SELF can function similarly to how humans learn. In attempting to emulate humans, 
and create artificial cognitive systems that mimic human reasoning, the main goal of 
the SELF Cognitive Management System is to provide a mathematical foundation 
that includes:

• Mathematical models that capture the key elements of machine learning and the 
different aspects of learning that encompass the different ways in which the sys-
tem must learn.

• Understanding of the algorithms for learning; guarantees, if you will, to assess 
important aspects of learning, such as:

 – When will they succeed?
 – How do we know they’ve succeeded?
 – How long will they take?
 – What happens if we don’t learn in time, or don’t learn at all?
 – What types of algorithms are better for what types of learning?

• Analysis of the inherent ease or difficulty in different types of learning 
problems.

SELF Cognitive Processing
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Memories

Episodic
Memories

Artificial
Cognition
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(Metacognition and 

Metamemory)

Senses
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(System Health and 
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Fig. 6.12 SELF memory management architecture
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• Mathematical analysis of the general issues in learning. These might include:

 – When should the algorithms be simple, and when should they be complex?
 – How does the SELF make sure it can properly recall the things it learned?

There are many definitions of learning. For many artificial systems, like classical 
neural networks, learning may be defined as pattern matching. We train the neural 
network to recognize patterns, and then utilize the network to tell us when it sees 
these patterns in data that is fed to the neural network. And while this is a form of 
learning, it is not real-time, autonomous, unsupervised learning and does not allow 
the system to learn concepts, to react to unknown situations, which is essential for 
fully autonomous, self-reliant, unsupervised systems like the SELF. Real learning 
allows the system to sense the environment, learn from it, and act on it over time, in 
pursuit of its agenda and goals, based on the evolving constraints within the SELF. 
And while remembering patterns is a part of learning, it is by no means the majority 
of learning. Part of learning is being aware of oneself, to be able to assess one’s own 
abilities. This is not different in the SELF. To learn is to evolve, to move forward, 
and to gain new abilities. This requires a learning system that can track spatial, 
temporal, and emotional characteristics of the information we bring in. Learning is 
not just remembering, but inferring as well.

Learning within the Polymorphic, Evolving, Neural Learning and Processing 
Environment PENLPE learning management system tracks changes in the cognitive 
framework that enables the SELF to perform new tasks previously unknown or to 
perform tasks already learned more accurately or more efficiently. Learning is con-
structing or modifying representations of what the SELF is experiencing. Learning 
also allows the SELF cognitive framework and memories to fill in skeletal or incom-
plete information or specifications about a domain (self-assessment). Figure 6.13 
illustrates Learning Management within the SELF.

6.7.3  SELF Decision Management

The SELF Decision Management architecture provides the ability to organize infor-
mation semantically into meaningful fuzzy concepts and information fragments that 
create cognitive hypotheses as part of its topology. This approach addresses the 
problems of autonomous information processing by accepting that the system must 
purposefully communicate concepts fuzzily within its processing system, often 
inconsistently, in order to adapt to a changing real-world, real-time environment. 
Additionally, the SELF’s processing framework that allows the system to deal with 
real-time information environments, including heterogeneous types of fuzzy, noisy, 
and obfuscated data from a variety of sources with the objective of improving 
actionable decisions using Recombinant kNowledge Assimilation (RNA) process-
ing integrated within the SELF cognitive processing framework to recombine and 
assimilate knowledge based upon human cognitive processes. The cognitive pro-
cesses are formulated and embedded in a neural network of genetic algorithms and 
stochastic decision making with the goal of recombinantly minimizing ambiguity 
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and maximizing clarity while simultaneously achieving a desired result. The SELF 
Decision Management involves the Dialectic Argument Structure discussed above. 
Here we expand on the discussion to include decision management/support. The 
overall SELF Decision Management architecture is shown in Fig. 6.14. Details of 
the Context Manager and Decision Manager are provided below.

6.7.4  SELF Rules Management

The PENLPE Rules Manager provides the definitions, structures, rules, 
 constraints, etc. that a minimum Cognitron must have. All Cognitrons within the 
SELF begin with a Cognitron Base Class (CPBC) of information that it must 
inherit. This Cognitron CPBC is customized for specific Cognitron purposes 
within the SELF processing system. This is done to ensure that every Cognitron 
within the SELF contains those structures and properties required to be recog-
nized and handled by the attention components of the artificial consciousness 
subsystems. Some of the properties contained within the CPBC include definitions, 
constraints, and structures for Cognitrons association and coalition formation, how 
Cognitrons activation level is increased or decreased (Cognitron prioritization), 
communications protocols among Cognitrons, and how Cognitrons communicate 
with their  short-term memories as well as the system-level long-term memories. 
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Figure 6.15 illustrates the high-level SELF Rules Management architecture.  
The overall purpose of the SELF Rules Management is to:

• Provide an architectural framework for the control and evolution of the Cognitron 
personalities.

• Provide a framework for domain-independent rules and goals of the Cognitrons 
(those consciousness aspects that are common among all domains).

• Provide an easily customizable ‘plug-in’ framework for the domain-specific 
portions of the Cognitrons.

• Provide the cognitive structures and processes for behavioral and emotional 
capabilities of each Cognitron.

Figure 6.16 provides one view, or slice, through the Rules Management frame-
work. Figure 6.16 illustrates the Cognitron Rules Class Hierarchy. This class hierarchy 
shows the classes of rules that are available to the Cognitrons.

Through the SELF Rules Management system, and the Cognitron class hierarchy, 
specialized rules are created, learned, and evolved throughout the processing life of 
the SELF. This includes creating specialized roles for possibly artificial emotions or 
artificial cognition required to provide motivations and goals with the PENLPE 
cognitive processing environment to facilitate learning within the system.

6.7.5  SELF Cognitron Management

Creating Cognitrons which are capable of learning and reasoning about information 
provides a robust, adaptive information processing system capable of handling new 
situations. When we use the term reason, we refer primarily to abductive logic, 
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sometime called critical thinking to discriminate it from the formal logic methods 
of deduction and induction. For example, data mining uses induction to develop 
assertions that are probably true. The dialectic search uses abductive logic to develop 
propositions that are possibly true. As explained in the text, Bayesian methods can-
not be used to measure possibility; in its place we use a method that is based upon 
Renyi’s entropy theory, as explained previously [206].

A key value that the Cognitron is that it provides is its ability to learn from opera-
tors and from data. Using this learning, the Cognitron has the potential to provide 
the operators and analysts knowledge extracted from various sources of informa-
tion. It performs this function 24*7, and can be cloned to support as many operators 
as required and as system resources allow. Since the Cognitrons learn and evolve 
over time, it is crucial to provide the SELF with a methodology to monitor and man-
age the Cognitron evolution. Details of the Cognitrons and their ability to reason 
will be discussed in Chap. 8. It is imperative to provide performance metrics for the 
Cognitron learning algorithms as well as the abductive hypothesis generation and 
testing algorithms that provide the major “reasoning” components of the SELF. 
Figure 6.17 illustrates the Cognitron management architecture.
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Fig. 6.17 SELF Cognitron management architecture
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6.8  Discussion

We have laid the foundations for the SELF, in terms of a providing an overall cogni-
tive framework (the ACNF), a synthetic, human-like memory system, and 
Cognitrons to provide the SELF with a sense of artificial consciousness. The next 
major piece to creating a SELF is the ability to take in and process information, and 
in doing so, to “learn” from experience. Chapter 7 describes the SELF learning 
system, which utilizes its Cognitrons and memory systems, coupled with a variety 
of learning processes, including processes modeled after human constructivist 
learning techniques.

6.8  Discussion

http://dx.doi.org/10.1007/978-1-4614-8072-3_7


www.manaraa.com

109J.A. Crowder et al., Artificial Cognition Architectures,  
DOI 10.1007/978-1-4614-8072-3_7, © Springer Science+Business Media New York 2014

From the moment our brain functions at all, we begin the process of learning. 
In order for a SELF to be an autonomous system, it must also begin and continue 
the process of learning throughout its existence. The main goals of the mathematical 
foundations for SELF learning include:

• To create mathematical models that capture the key elements of machine learning 
and the different aspects of learning that encompass the different ways in which 
the system must learn [213].

• To provide an understanding of the algorithms for learning; guarantees, if you 
will, to assess important aspects of learning, such as:

 – When will they succeed?
 – How do we know they’ve succeeded?
 – How long will they take?
 – What happens if we don’t learn in time, or don’t learn at all?
 – What types of algorithms are better for what types of learning?

• To analyze the inherent ease or difficulty in different types of learning problems.
• To mathematically analyze general issues in learning. These might include:

 – When should the algorithms be simple, and when should they be complex?
 – How do we make sure we recall the things we learned properly?

There are many definitions of learning. For many artificial systems, like classical 
neural networks, learning may be defined as pattern matching. We train the neural 
network to recognize patterns, and then utilize the network to tell us when it sees 
these patterns in data that is fed to the neural network. And while this is a form of 
learning, it is not real-time, autonomous, unsupervised learning and does not allow 
the system to learn concepts, to react to unknown situations, which is essential for 
fully autonomous, self-reliant, unsupervised SELFs. Real learning allows the system 
to sense the environment, learn from it, and act on it over time, in pursuit of its agenda 
and goals, based on the evolving constraints within the SELF. And while remember-
ing patterns is a part of learning, it is by no means the majority of learning. Part of 
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learning is being aware of oneself, to be able to assess one’s own abilities. This is not 
different in the SELF. To learn is to evolve, to move forward, and to gain new abili-
ties. This requires a learning system that can track spatial, temporal, and emotional 
characteristics of the information we bring in. Learning is not just remembering, but 
inferring as well. Described in this chapter are many different learning mechanisms 
for the SELF that will provide the capabilities for the system to experience its envi-
ronment, to grow and evolve as it takes in information, analyzes it, makes inferences, 
and then learns from it; either extending memories it already has, creating new mem-
ories, or reinterpreting memories that it has, based on new information.

7.1  Autonomous Heterogeneious Level Learning Environment

Learning within the SELF connotes changes to the ACNF that enable a SELF’s 
cognitive framework to perform new tasks that were previously unknown, or to 
perform tasks already learned more accurately or more efficiently. SELF Learning 
involves constructing or modifying representations based upon experiences to fill in 
skeletal or incomplete information or specifications about a domain or self- 
assessment [79]. The SELF cannot be completely preloaded, or trained for every 
possible stochastic situation that may present itself. Therefore, an autonomous and 
dynamically updating (learning) environment is required to incorporate new infor-
mation and new inferences into the SELF’s cognitive systems. Analogous to 
humans, learning new characteristics expands the SELF’s domain or expertise and 
lessens the brittleness of its cognitive framework. Within a complex cognitive eco-
system like the SELF, no single learning system will suffice, as each type of learn-
ing algorithm/methodology can be better suited for certain types of learning 
problems. The SELF incorporates many types of learning systems to accommodate 
the heterogeneous environments an autonomous system may find itself in:

• Rote: Learning: also called “learning-by-memorization” is an associative 
implicit learning & memory that carries rote information required by the ACNF 
to function [51].

• Induction: this type of learning extrapolates from a given set of examples so that 
the ACNF can make accurate predictions about future examples.

• Abduction: here, genetic algorithms generate populations of hypotheses and a 
Dialectic Argument (Tolmin) Structure is used to reason about and learn about a 
given set of information or situations. This is also called “Concept Learning.”

• Clustering: pattern recognition and related aggregation organization.
• PAC: Learning known as, “Probably, Approximately Correct.” This learning 

style assumes information attained comes from an unknown distribution of infor-
mation about a particular topic. Assumption: learning is supported by  information 
we have already observed either directly, or indirectly related to an observed 
topic and helps to provide an approximately correct basis for newly encountered 
data or information.

• Occam Learning: this learning system is often cited to justify one hypothesis 
over another, and more generally means “prefer simpler explanations.” The more 
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data are compressed, i.e., the more complex the learning algorithm, the more 
likely some important nuance or subtlety is missed or eliminated. Therefore, we 
define an “Occam Learning Methodology” to be one that produces hypotheses, 
or “Pattern Discoveries” that are simple in structure, and grow slowly as more 
data are analyzed.

• Emotional Learning: provides “personality” parameters and Conscious 
Cognitrons with emotional attributes that allows the SELF cognitive framework 
to have sensitivities to emotional computation and to situational analysis. We 
compute Emotional Learning Responses (called ‘eigenmoods’) and Emotional 
Action Responses from the Cross-Connectivity from the SELF’s recombinant 
neural fiber relationship threaded network, in conjunction with Autonomic 
Nervous System States. Emotional Learning Responses are computed from the 
continuous n-dimensional fuzzy weightings, and Emotional Action Responses.

7.2  Autonomous Genetic Learning Environments

Throughout the book, there are many references to genetic learning algorithms. 
This sub-chapter discusses genetic learning environments in context of an ACNF. 
Figure 7.1 illustrates the basic genetic learning framework and connections for 
an ACNF.
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Genetically learning Cognitrons inherit initial states from the memory system 
and inherit the initial parameters for behavior from the behavioral center of the 
ACNF. The consciousness mechanisms, along with the Artificial Prefrontal Cortex 
(or Mediator), control the response of the learning Cognitrons, and direct its con-
straints based on the environment and the problems to be solved currently (see 
Fig. 7.2). This provides the priorities, preferences, goals, needs, and activation con-
straints (when you know you’ve learned something). The genetic Cognitrons (called 
genomes) adapt to the environment and gather information in order to make conclu-
sions (learn) about the problem to be solved.

In an autonomous genetic environment, genomes are transferred to other Cognitrons, 
to speed up adaptation of new generations of information content facilitating the 
development of new conscious Cognitrons within the SELF behavioral environment.

7.3  SELF Emotional Learning

In the ACNF environment, the drives, priorities, and constraints, shown in Fig. 7.1, 
influence emotions. The behavioral subsystem receives situations and computes 
actions, while memories provide personality parameters and Cognitron sensitivities 
to emotional computation. It is assumed that each matrix element Eaj represents an 
emotion. Emotion (a,j) of performing action a, in situation j. Given this, genetically 
learning Cognitrons perform an emotion learning procedure, which has the follow-
ing four steps:

 1. State j: choose an action in situation – (let it be action a; let the environment 
return situation k).

 2. State k: feel the emotion for state k – Emotion(k).
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 3. State k: learn the emotion for a in j – Emotion(a,j).
 4. Change state: j = k; return to 1.

The following learning procedure is a secondary emotion reinforcement learning 
procedure. The learning constraint used in step 3 is:

 
Emotion a j0 0,( ) = ( )genome inherited

 

 
Emotion a j Emotion a j emotion k1 0, , ( )( ) = ( ) +

 

This learning rule adds the emotion of being in the consequence situation, k, to 
the emotion toward performing action a, in situation j, where k is the 
consequence.

The above discussion described general emotional learning within autonomous 
environments, however, a SELF requires learning algorithms that provide the same 
basic learning capabilities, but in a real-time continuously changing environment, 
typically difficult to implement for learning systems in general. The next sub- 
chapter discusses the concept and algorithms for a Decision Analytics in Real-Time 
(DART) learning system that provides the capability for concept learning in a real- 
time environment.

7.4  Decision Analytics in Real-Time (DART)

Decision Analytics in Real-Time (DART) is a general approach to continuous learn-
ing in a real-time, continuously changing environment. Later sections of this chap-
ter will provide particular learning methodologies (e.g., Occam Learning) which are 
used for specific instances. The purpose of the DART is to provide the cognitive 
processing framework with Cognitron characteristics which determine learning 
modes to continuously test new strategies against dynamically created simulation 
models (created by the Artificial Prefrontal Cortex) and to dynamically update 
memories used by a Cognitron, based upon the results of the dynamic simulations 
[217]. The DART operates indefinitely (as long as the SELF is ‘alive’) and the 
execution system utilizes the results of the genetic learning process whenever they 
are available and broadcast to the Cognitrons.

7.4.1  Case-Based DART

First, we will discuss a case-based method of initializing genetic algorithms used 
for DART learning systems. A genetic algorithm with a case-based component pro-
vides a directed search mechanism for DART learning systems. When a genetic 
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algorithm is started, strategies learned previously under similar environmental 
conditions are included in the initial population for the genetic algorithm. 
Additionally, a DART learning system evaluates the learning process by comparing 
and contrasting performance with and without a case-based component.

Anytime learning systems are essential for a SELF because:

 1. The environment the SELF is exposed to and trying to learn about/from continu-
ously changes.

 2. Constructs to detect changing information are necessary, and are, in fact, random 
variables, hence, DART needs are absolute.

 3. Measurement errors must be accounted for in the fuzzy learning process.

DART learning systems include machine learning techniques utilized to address 
sequential decision problems. Hence, we incorporate concepts of Occam Learning 
into DART processes, as reactive strategies expressed as condition-action rules; 
utilizing modified genetic algorithms applied to sets of symbolic reactive rules gen-
erating increasingly, over time, competent Occam Strategies. This is utilized to 
focus on “detectable changes” within internal and external environments. DARTs 
monitor the external environment and, when a change is detected, updates the learn-
ing strategies with the new information. The changes are organized/classified and 
stored, allowing new case-based methods to be developed, as new cases are discov-
ered, and reused when they are needed again.

The basic idea for DARTs is to integrate continuously running, but dynamically 
changing execution and learning components. The Cognitron’s learning component 
continuously tests new genetically generated strategies (variations upon strategies 
that have worked in the past), and updates the Cognitron’s knowledge base with the 
best available results. In this way, each Cognitron has currently evolved learning 
strategies for the external data environment(s). The execution component of a 
DART learning system controls the Cognitron’s interaction with its environment 
(both internal and external), and includes a monitor that dynamically modifies the 
learning simulation models based on its environmental observations. When the sim-
ulation model is modified, the genetic algorithms are re-started on the modified 
simulation model. A DART learning system is assumed to operate indefinitely, and 
the execution system uses the results of learning components as they become 
available.

Genetic algorithms are well-suited for initiating and reinitiating learning compo-
nents in a continuously changing environment. Additionally, the genetic population 
approach was enhanced by including strategies, under the control of the learning 
component, when genetic population is performed. Previously organized and clas-
sified cases (developed via Dialectic Argument Structure discussed elsewhere) are 
stored, and the FUSE-SEMs are used to find the most similar cases to be used at any 
point in time. Figure 7.3 illustrates the high-level DART learning system architec-
ture. The execution component of a DART learning system includes a decision 
maker which controls the Cognitron’s interaction with its environment, based on its 
active knowledge base (current strategy). The learning component of a DART 
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learning system attempts to provide the execution component with improved strategies 
by experimenting with alternative hypotheses (new strategies) on a simulated model 
of the environment [51].

7.5  Cognitronic Learning

This sub-chapter illustrates mechanisms for several different types of learning 
which can be implemented for Cognitrons, and speculates briefly on their implica-
tions/benefits for human learning and development. In particular, we’re concerned 
with the role of “attention”, i.e., bringing specific content into view of conscious-
ness, while learning. We propose computational mechanisms for such learning and 
we believe that when Cognitrons are employed within a DART learning system, that 
this creates the autonomous Cognitrons required to mimic human information pro-
cessing and decision making. These autonomic Cognitrons running within a DART 
genetic learning process are described in the following subsection.

7.5.1  Cognitron Autonomy

Artificial Intelligence in general and research into Artificial Cognitrons in particu-
lar, pursues the combined goals of understanding human intelligence and translating 
that into Artificial Cognitive software. Designing, implementing and experimenting 
with autonomous Cognitrons furthers both these goals in a synergistic way. The 
Cognitron senses environments, and acts, over time, in pursuit of an agenda (based 
on a priori directives/goals, artificial instinct, and constraints). In biological agents, 
this type of an agenda arises from an evolving drive to satisfy associated goals [9, 10]; 
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in a Cognitron based SELF, the driving forces and goals are built in by a creator (the 
human-in-the-loop and, over time, by the ACNF). Such driving forces, which act as 
motive generators, must be present, whether explicitly represented, or expressed 
causally [51]. Cognitrons are developed, used in real-time, and stored away for later 
reuse to help the system infer from past experiences at a later time. In other words, 
it is structurally coupled to its environment. Biological examples of autonomous 
agents include humans and most animals. Analogously, we are concerned with arti-
ficial autonomy implemented as autonomous Cognitrons, designed for similar 
humanistic type tasks, for ‘living’ in real-world environments.

7.5.2  Cognitronic Cognition

Many researchers have postulated [87] that human cognition is implemented by a 
multitude of relatively small, special purpose processes, almost always uncon-
scious. Communication between them is rare and over a narrow bandwidth. 
Coalitions of such processes find their way into consciousness. This limited capac-
ity workspace of our cognition serves to broadcast the message of the coalition to 
all the unconscious processors, in order to recruit other processors to join in han-
dling the current novel situation, or in solving the current problem. Thus conscious-
ness in this theory allows us to deal with novelty or problematic situations that can’t 
be dealt with efficiently, or at all, by habituated unconscious processes. In particu-
lar, it provides access to appropriately useful resources, thereby solving the rele-
vance problem [177, 178].

All this takes place under the auspices of contexts: goal contexts, perceptual 
contexts, conceptual contexts, and/or cultural contexts. These may look like goal 
hierarchies, dominant goal contexts, a dominant goal hierarchy, dominant context 
hierarchies, and lower level context hierarchies. Each context is, itself a coalition of 
processes. Though contexts are typically unconscious, they strongly influence con-
scious processes [1, 2].

Crowder and Friess [77] postulated that, in humans, the act of learning results 
simply from conscious attention. However, the act of conscious attention includes 
action selection, emotion, voluntary action, meta-cognition and an actual sense of 
self. In short, it involves a complete high-level theory of cognition [30]. The impli-
cation of this is that in order for the SELF to attain real, human-like learning, we 
must provide the SELF with the same cognitive constructs and the need for mecha-
nisms to perform “Conscious” perceptions.

7.5.3  Conscious Cognitrons

We define a “conscious” Cognitron to be a Cognitron which implements global 
workspace theory [48, 49]. We believe that conscious Cognitrons play a synergistic 
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role in both cognitive theory and artificial cognitive software. Minds can be viewed 
as control structures for Cognitrons [1, 2]. A theory of mind constrains the design 
of the “conscious” SELF Cognitron that implements that theory. While the theory 
of the mind is typically abstract and only broadly sketches the requirements for an 
artificial cognitive architecture, the SELF computational design provides a fully 
articulated architecture and a complete set of execution mechanisms. We feel the 
SELF architecture and its set of mechanisms provides a richer, more concrete and 
more decisive theory for artificial cognitive systems. Moreover, we believe the 
design decisions taken during an implementation may furnish hypotheses about 
how human minds work. These hypotheses may motivate experiments with humans 
and human/computer interaction experiments. Conversely, the results of such 
experiments may motivate corresponding modifications of the SELF architecture 
and mechanisms of the Cognitrons. In this way, the concepts and methodologies of 
cognitive science and of computer science may work synergistically to enhance our 
understanding of mechanisms of both artificial cognitive architecture and the human 
mind [44, 45].

7.5.4  Autonomous Learning Mechanisms

In prior chapters, we have seen descriptions of several, quite distinct types of learn-
ing available for use by “conscious” Cognitrons. In this chapter we explore some 
others. Firstly, we explore Declarative learning, which occurs in episodic memory 
and is implemented as case-based memory [50]. Precepts from a given focus stored 
in a SELF’s main associative memory will constitute declarative learning. Not only 
is the content of a precept learned, but relationships with other items of memory and 
some generalizations are as well. Each new precept represents a new stored case 
study and constitutes declarative learning. Declarative learning also results from the 
learning of new overall concepts. We suspect that human declarative learning also 
occurs in each of these forms, each with somewhat different mechanisms.

Secondly, autonomous Procedural learning also occurs in several forms. Gradual 
procedural learning takes place as associations are strengthened, over time, between 
codelets that are “conscious,” or even active, together. The gradual reorganization of 
codelets is another form of procedural learning, as is the gradual learning of new 
artificial behaviors through conceptual learning. Humans are capable of each of 
these modes of procedural learning and they each require a different mechanism. 
Human learning of language for example, has both a declarative and a procedural 
component.

A basic tenet of global workspace theory says that consciousness is sufficient for 
learning [9, 10] and is the reason that a SELF is modeled with Cognitrons. The 
contents of “consciousness” will be routinely written to associative procedural 
memory. The learning of new associations between codelets and adjustments to 
such associations will occur when their contents become “conscious” or become 
prominent in the forefront of a SELF’s thought processes. A SELF, like humans, 
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process information via multi-tasking in the background, while interacting with a 
given function. But it will also occur to a lesser degree when the codelets are active 
together; this is known as subconscious autonomy; even though a newly formed 
concept may well have been learned during “conscious” directed activity. This 
seems to suggest that some procedural learning, some gradual improvement of 
skills may occur subconsciously with practice.

We propose that within the SELF subconscious learning of importance weights 
within the ACNF emotion networks occurs subconsciously as well. We then argue 
that in complex, dynamic domains, such as autonomy, the learning mechanisms 
described here allow Cognitrons to adapt and effectively live in those domains. We 
further propose that variations in development periods occur for different types and 
complexities during knowledge acquisition. Particularly, in complex, dynamic 
domains where active knowledge engineering is generally expensive, subconscious, 
passive, inexpensive autonomous development periods can provide a simple, but 
cost effective solution to knowledge acquisition. We speculate positively on the 
implications of these mechanisms for the evolving, complex SELF, and for human 
learning and development [116, 117].

7.5.5  Autonomous Behavior Learning

As discussed above, any agent (artificial or biological) senses, perceives and acts in 
order to satisfy built-in driving forces and goals The ever-present challenge for any 
agent is to produce the appropriate action relevant to internal states modulated by a 
perceived environmental situation. That is, the action selection mechanism of an 
agent decides what to do next. New concepts get introduced via conceptual learning 
mechanisms. New concepts require new behaviors, thus requiring an action selec-
tion module with a capability to learn. As shown in Fig. 7.4, the SELF behavioral 
learning system, to realize its adaptive action selection capability, uses four major 
components:

 1. The Cognitive Behavior Network (CBN) system can be viewed as a collection of 
behavior streams (action plans). Each such stream is a connected partially 
ordered set of behaviors (plan operators) that serve to satisfy a goal or sub-goal 
of the Cognitron. A behavior stream is a partially ordered plan which guides 
execution of behaviors (plan operators) so as to effect the required transition 
from the initial state (mainly dependent on the internal representation of the per-
ception) to the goal state. The CBN system has additional functions including 
interface with consciousness and priming.

 2. The Case-Based Learning Planner (CBLP) is a case-based DART learning sys-
tem described above [46, 48]. In general, a Case-Based Reasoning (CBR) system 
is a paradigm that solves new problems by adapting prior solutions to old 
 problems and, to do so, it supports retrieval, adaptation, and retention processes. 
In our system the CBLP must have a flexible plan learning/adaptation mechanism. 
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The CBLP’s processes operate on a unit of information called a case. In our 
adaptive action selection mechanism, a case is represented as a triplet consisting 
of <problem description, solution, outcome>. A problem description includes 
the initial stale of the problem situation (the contents of the focus, relevant coali-
tions of codelets, and feature values of relevant concepts, relevant registers in 
working memory, etc.), one or more (sub)goals that need to be satisfied in such 
a problem situation, and associated behavior streams (action plans) that achieve 
those goals. A solution is an action plan (behavior stream) whose execution 
beginning at the initial state of the problem achieves its stated (sub)goal(s); each 
of which in turn satisfying one or more of the innate drives which are that repre-
sent the primary motivation of the Cognitron. An outcome is the expected result 
(for example, feedback from a human) when the solution plan is applied in the 
initial state.

 3. The Knowledge-Base (KB) is used to store information needed in the behavioral 
learning process. That is, it contains all domain related knowledge, built-in and/
or leant, which is specific to the Cognitron’s action selection mechanism. The 
CBLP/CBN-Interface module uses the KB module to couple the RN and the 
CBLP modules, and to facilitate the knowledge acquisition process. It is used to 
(a) store newly acquired domain knowledge into the KB, (b) compile the prob-
lem description (from the CBN side) in the format the CBLP can use, (c) format 
a newly obtained plan (from the CBLP) so that it can be integrated into the RN 
system and (d) facilitate effective conversation with human (via the CBN) by 
providing information available in the Conceptual Ontology and/or the KB. The 
CBLP/CBN-interface uses its own working (short-term) memory (WM).

Initially, Cognitrons are provided a CBN including a set of behavior streams 
(action plans) capable of producing actions appropriate to already known current 
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concepts and situations in the domain. This allows Cognitrons to be able to adapt 
and behave differently to new situations in their environment. Behavioral learning 
is based upon two principles:

 (a) Cognitrons will use past experiences to learn new behavior streams by adapting 
old plans that worked in similar situations.

 (b) Cognitrons must be able to converse with humans and interact with their 
environment to acquire new domain knowledge. This also allows for feedback 
on the accuracy of plans and for necessary revisions.

When a newly learned concept is perceived, the “consciousness” mechanism 
broadcasts the relevant information to recruit codelets, which will collectively pick 
the appropriate behavior stream(s) that will produce an appropriate response. Since 
a new concept is involved the selected stream may fail to produce an appropriate 
action. This failure initiates the behavioral learning cycle [123, 126]. As an exam-
ple, the learning happens by processing information content from a conversation 
with a human supervisor. At each interchange, the learning mechanism adapts 
streams from old solutions stored in the CBLP system. A single interchange may 
not suffice to produce an appropriate new stream (action plan). But, episodic mem-
ory (implemented using case-based memory) stores the sequence of interchanges 
and the trace of the reasoning used in building a new behavior stream. This, along 
with the already acquired domain and control knowledge stored in the KB and 
CBLP modules, will help in the effective use of past experience to speed up the 
learning process. A successfully learned stream in the CBLP module gets integrated 
into the CBN system where it can be instantiated and executed.

In addition to learning new streams, the behavioral leaning process is proposed 
to include the dynamic creation of new coalitions of behavioral codelets which 
choose and instantiate a new stream whenever it becomes relevant. The behavioral 
learning process is also proposed to initiate codelets which implement actions for 
each individual newly discovered behavior. The dynamic nature of the behavior 
learning process is accomplished in part by a code management framework which 
has the ability to copy, modify, and add existing codelets to support a developing 
stream of consciousness.

7.5.6  Behavior Learning and Human Interaction

Cognitronic teaming is essential for developing the intelligence and adaptability of 
an autonomous system to changes within an environmental domain. When 
Cognitrons interact with the environment, including humans, an additional layer of 
dynamism seems to occur within the Cognitron’s domain. Interactions can be slow 
and innocuous or rapid and complex. In either case Cognitron learning mechanisms 
are essential for developing autonomy. In contrast, humans have a number of inher-
ent organic sensing and survival based learning mechanisms. Hence, Cognitrons 
similarly require learning via several types of artificial learning mechanisms 
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enabling environmental adaptation as described in Fig. 7.5 which illustrates the 
DART finite state machine for genetic learning and Fig. 7.6 describing the learned 
behavior selection process.

The DART Finite State Machine is utilized to manage the genetic learning pro-
cesses within the DART. The DART Finite State Machine accepts input from the 
Behavioral Learning Model and accesses the genetic hypotheses generation and 
testing processes to help manage the DART learning process. Each state drives dif-
ferent actions from DART. Termination of the learning process occurs either when 
the system has determined it has hypotheses that adequately explain the observa-
tions/data/information or when the system cannot make a determination, either 
because it has taken too long (timed out) or because there is enough rebuttal evi-
dence to the hypotheses that they are not worth pursuing (lost focus).

The process of abduction (hypothesis-based learning) makes use genetically 
generated populations of hypotheses (described in Chap. 9) to create potential 
explanations for the observations/data/information being processed. Finite state 
conditions and resulting actions are as follows:

• Start: this state determines whether the input from the DART Learning 
Behavioral Model is adequate, based on goals, needs, mission constraints, etc. If 
the input is adequate, learning has occurred and the process terminates and sends 
it on to memory processes. If the input it determines the learning models from 
the DART Behavioral Model is not adequate, further reasoning, analysis, and 
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learning processing is required. Depending on the “state of learning” an approach 
is determined and the information is sent to the “Search” process to look for 
relevant information and possibly create more abductive hypotheses to increase 
the level of explanation (increase the knowledge density for that topic).

• Approach: in this state the learning approach is evaluated and the information is 
passed on to the Search state. There are many learning approaches that are pos-
sible, as explained throughout Chap. 7. Input from the other states helps deter-
mine the approach. Detected tells the approach state that information and/or 
hypotheses that may be useful are available for evaluation. An input of “not 
close” tells the approach state that the learning is still valid, much work is need 
for an adequate explanation; DART hasn’t learned much yet.

• Interact: this state determines the level of interaction DART requires from the 
rest of the SELF, including the level of resources that will be required to continue 
the learning process. This required interaction with the Artificial Prefrontal 
Cortex to request resources and possibly with interface Cognitrons to request 
outside information (depending on the SELFs Locus of Control determination).

• Search: this is the main “learning” state for DART, but Abductive, Hypothesis- 
Driven, Occam Learning system, described next in Sect. 7.6. Once DART deter-
mines that something has been adequately learned, the Search state deems the 
learning a “success” and sends notification to the rest of the SELF. If a success 
criteria is not reached in the given time frame (which is determined on a case-by- 
case basis), a “time out” signal is sent to the Terminate state.
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• Terminate: here DART send a failure message to the ISAAC cognitive process-
ing system if either the learning times out, or it is determined that the learning 
shouldn’t continue due to lack of evidence, or too much rebuttal evidence (the 
system has lost focus on this subject).

Once the DART behavioral learning system has “learned” something, the SELF 
must determine the proper behavior associated with the new learned information. 
The DART Behavior Selection Process shown in Fig. 7.1 is utilized to determine the 
appropriate behavior associated with a given memory, or input information. A fail-
ure or success input from the Finite State Machine drives the system the different 
behaviors, depending on the goals, directives, mission needs, and constraints on  
the system at that time. Introspection Cognitrons determine the internal needs of the 
system and provide perspective on how proposed behaviors (actions) will affect the 
SELF’s internal systems. Action Cognitrons determine the affects the proposed 
behaviors will have on the external SELF environment. Once a behavior is selected, 
the Action Cognitrons send the required information to the SELF’s effector system 
to initiate the chosen behavior.

7.6  DART Occam Learning

The push for real-time autonomous artificially intelligent systems over last number 
of decades has driven companies and government research facilities to spend con-
siderable R&D budgets looking for systems that can operate with little or no super-
vision while processing incredible amounts of heterogeneous information. Building 
upon the last chapter, we will focus upon proposed mechanisms for artificially, 
“learning with experience,” in autonomous AI systems [57]. The goal of having 
machines that learn with experience is one of the most intriguing problems in com-
puter science and computer engineering. Unfortunately, by its nature, learning is 
somewhat fuzzy, and random in nature, as information comes at us rapidly and in 
stochastic fashion [164] learning things a SELF does not yet know, and possibly 
didn’t know it needed to learn, and in doing so finding patterns within the interactive 
environment that it can learn. This constitutes not pattern matching, or pattern 
recognition, but is, in fact, pattern discovery. Thus, we propose the need for a math-
ematical framework for SELF pattern discovery within an autonomous SELF.

7.6.1  DART Pattern Discovery

The notion of pattern recognition is readily known and understood [87, 88]. 
However, here we introduce a different concept in machine learning, the concept of 
Pattern Discovery to assist in filtering through vast, stochastic, and unpredicted “fire 
hoses” of information content to achieve high value droplets of actionable content. 
We propose employing computational physics concepts for finding causal structure 
within stochastic data.
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Pattern Discovery is intended to contrast the well understood concepts of Pattern 
Recognition and Pattern Learning. In Pattern Recognition the aim is to analyze 
ingested content and assign it to one or more pre-determined categories or patterns. 
In most Pattern Learning systems, the goal is to determine which of the several pre- 
determined pattern categories corresponds to the available pattern algorithms [187]. 
Although a valuable commodity for simple computational systems, a priori defined 
patterns facilitated by pattern recognition and pattern learning paradigms many 
times are difficult to apply to complex environments. Patterns are essentially out-
lines or templates developed and usable for specific contexts. Similar to the devel-
opment of domain ontology’s, patterns are only 100 % correct at the exact time they 
were developed and for the exact context they were developed in. Hence, our pro-
posed approach is to discover patterns in real-time within a most current context, 
remember that detailed context and reuse the behavioral patterns learned if and 
when the detailed context reaches a threshold of similarity sometime in the future.

For our use of Pattern Discovery, the goal is to avoid the necessity that a priori 
knowledge about what structures, or patterns, may be relevant [196, 197]. This is 
not a new problem, and the classical approach, based on statistical mechanics, is to 
derive patterns (or macroscopic properties) from raw data (or microscopic compo-
nents). Here we take the inverse approach, extending the concept of extracting 
“geometry” or causal structures, from a time or frequency series of data or informa-
tion. We build upon the concept of “Occam Learning” [70] to construct the simplest 
model capable of capturing context specific causal structures, or “patterns” in the 
data which constitutes a representation of the causal structure of the hidden 
process(es) which generated the behavior observed or captured. We assert that this 
representation is the maximally efficient model of the observed data-generating pro-
cess, based on the learning principles laid out in the Occam Learning Process. The 
underlying computational mechanics concepts have been used to analyze dynamical 
systems, evolving spatial computation, and stochastic resonance, among others. 
However, the combination of computational mechanics coupled with the Occam AI 
learning constructs provides a unique method for Pattern Discovery within large, 
heterogeneous data sets and moves us closer toward providing a real-time, autono-
mous SELF.

Here we discuss a mathematical framework for discovering, describing, and 
quantifying new patterns, based in computational mechanics and using tools from 
statistical physics. We construct optimal, minimal models of stochastic processes 
and their underlying causal structures that drive an “Occam Learning” model of 
intrinsic computational information transformation. Additionally, we summarize 
the mathematical foundation of computational mechanics, especially those con-
structs in optimality and uniqueness to drive the Occam learning algorithms. We 
also describe the principles and motivations underlying the computational mechan-
ics, emphasizing connections to the minimum description length principles underly-
ing Occam Learning, and its implications to Probably, Approximately Correct 
(PAC) machine learning concepts [87, 88].
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We will examine the concepts and issues involving Pattern Discovery and how 
they are addressed by employing computational mechanics. Then we provide dis-
cussion of the computational mechanics based mathematical structures that pro-
vide the foundation for Pattern Discovery, with particular attention to optimality 
and uniqueness theorems. Uniqueness theorems are then utilized within the Occam 
Learning framework to provide a DART learning system the ability to learn, and 
then to extend these unique pattern structures. Differences between this work 
and other work in computational mechanics is in our utilization of Renyi’s Entropy 
theory versus Shannon’s; utilizing Renyi’s mutual information theory in our compu-
tations involving stochastic processes [69].

7.6.2  DART Pattern Discovery Concepts

Approaches to processing Pattern Discovery should meet a number of criteria:

• Predictive – the models the algorithms produce should allow the system to 
predict the original process or system that produced the data, and provide a 
compressed description of it (learned pattern).

• Computational – should have storage within system memories on how the 
process or system stores, transmits, and transforms information (what causal 
structure produced the information?).

• Calculable – either analytically or by systematic approximation.
• Causal – system should understand how instances of the discovered patterns are 

produced.
• Naturally Stochastic – the learned patterns models should not just be tolerant of 

noise, but should be explicitly formulated in terms of stochastic ensembles.

For our uses, the key idea of utilizing computational mechanics is the supposi-
tion that the information required to drive the Occam Learning Pattern Discovery is 
actually within the data, or information picked up by the system’s sensors. A signifi-
cant challenge is dealing with real-time information coming from a number of pos-
sibly heterogeneous sensors and determining which data sets (or partitions) of data 
sets should be treated as equivalent, and how the data should be partitioned. We 
assert that correct mapping of data to partitions should leave the system with dis-
covered patterns that provide the system’s cognitive framework with the same 
degree of knowledge about the future of the data (similar prediction accuracy and 
consistency), has a proper degree of plausibility, but is also vague enough to account 
for future growth of the learned pattern definition [108, 153]. So the question is: 
how to create the partitions? For this we look to genetic algorithms. We create gen-
erations of partitions and then use these to create Occam patterns, or memories, 
from the populations, based on the partition constraints (based on computational 
mechanics) [96]. These are evaluated, based upon a combined set of Entropy and 
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quantum mechanics based relationship calculations. Partitions from the population 
that produce the best fit and utilized (with mutation and crossover) are used to create 
a new generation of partition population. The process continues until an optimal 
partition is created. Those partitions that produce patterns similar to those already in 
the system’s memories are sent to algorithms that evaluate the patterns for memory 
extensions or reinterpretations. Those that are not already part of the system’s 
memories are used to create new memories.

For this discussion, we refer to H[X] as the entropy of discrete random variable 
X, interpreted as the uncertainty in X. H[X|Y] is the entropy of X conditional on Y, 
and I[X|Y] is the mutual information between X and Y, as measured by Renyi’s 
Entropy and Mutual Information computations. Also, we restrict ourselves to 
discrete- valued, discrete-time stochastic processes (analogous to sensor data being 
collected by an autonomous system). Such processes are sequences of random vari-
ables, Si, and the values are taken from a countable set A. This is reasonable since 
we are talking about a system with multiple sensors, each taking in data over a 
specified period of time, each with a countable number of data samples [87, 88].

Our goal is to discover a pattern, or Occam memory that will predict all or part 
of the future of process 
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 of past data points and partitioning it into mutually exclusive 
and jointly comprehensive subsets, as shown in Fig. 7.7. That is, we make a class ℜ 
of subsets.
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ℜ discovers a pattern when it tells us something about how the distinguishable 
parts of the process affect each other, or how ℜ exhibits its independence, based on 
the Renyi entropy calculations discussed earlier. The smaller that
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is, the stronger the pattern discovered by ℜ. The causal state, as determined by the 
Occam memory of a captured pattern, together with the next observed process, 
determine a new causal state (and may cause a redefinition of the Occam memory). 
Thus, there is a natural relation of succession among the causal states of a captured 
pattern or causal process. This leads us to the definition of a captured or discovered 
pattern, which leads to an Occam Memory within the SELF. Each discovered 
pattern, or Occam Memory will have the following properties:

• Occam Memories are deterministic
• All Occam Memory causal states are independent
• All Occam memories are reconstructed from information fragments
• All Occam memory causal states are maximally prescient
• All Occam memory causal states are minimal for all prescient rival memories
• All Occam memory causal states are unique
• All Occam memories are minimally stochastic for all prescient rival memories.
• The excess entropy, E, of an Occam Memory is the Mutual Information between 

the memory’s semi-infinite past and its semi-infinite future.

7.6.3  DART Computational Mechanics and Occam Learning

Entities should not be multiplied unnecessarily.

William of Occam (1320 A.D.)

This maxim from William of Occam, called “Occam’s Razor,” is often sited to jus-
tify one hypothesis over others, and is taken to mean “prefer simpler explanations.” 
However, what reason might we have to believe that simpler explanations lead us to 
a hypothesis with fewer errors?

One might simply reason this from the observation that there are far fewer simple 
explanations than complex ones. However, it may be no more complex than the 
reasoning that simple explanations are less likely to fit data, just by chance. Another 
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way to view this is that by favoring smaller hypotheses over larger, we are less likely 
to run across bad hypotheses, which one of the fundamental axioms behind Occam 
Learning. Another axiom of Occam Learning is:

Learning is Data Compression

The more the data are compressed, i.e., the more complex the learning algorithm, 
the more likely something subtle that is important is missed or eliminated. Reasoning 
from this perspective, we define an “Occam Learning Algorithm” to be one that 
produces hypotheses, or “Pattern Discoveries”, that are simple in structure, and 
grow slowly as more data are analyzed. In fact, analysis has shown [41, 45, 47] that 
if we have a small hypothesis space, then by taking a polynomial number of data 
samples, we can achieve “Uniform Convergence,” i.e., the chance that any bad 
hypothesis with error > c, that is still consistent with the data, can be forced below 
some arbitrary number δ [185, 186, 188]. In the converse, is it impossible to get 
uniform convergence with a large hypothesis spaces, given a polynomial number of 
data samples, the answer is, sometimes [189].

Since learning is very stochastic in nature, particularly for real-time systems with 
heterogeneous data inputs, and given that it is impossible to know how many data 
points for a given unknown pattern may exist, we employ Occam Learning to pro-
vide Pattern Discovery. What we desire, then, is a mathematical framework and 
foundation that a DART Occam learning component, based in computational 
mechanics and Occam Learning principles can provide a SELF with autonomous 
understanding, reasoning, and decision making. Towards this end, a memory com-
putational framework that encompasses the computational theory of machine learn-
ing is discussed here. The goals of which are:

• To provide computational mechanics mathematical models that capture key 
aspects of Occam Learning.

• To provide the system self-analytical metrics for its algorithms:

 – When will they succeed?
 – How long will they take?

• To develop algorithms that provably meet desired criteria;
• To provide the system self-guidance about which algorithms to use when.
• To allow the system to analyze the inherent ease or difficulty of learning 

problems.

Figure 7.8 illustrates the Occam Learning, computational mechanics 
framework.

We have provided a mathematical basis for a DART Occam Learning compo-
nent, based in computational mechanics. As discussed, the Occam Learning 
component is but one of many learning constructs that must reside in a SELF 
cognitive framework to allow it to act autonomously and to make sense of global 
complexities. The Occam Learning Computational Framework provides the 
ability for simple Pattern Discovery that feeds more complex memory and 
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inference systems within the ACNF to allow the autonomous system to think, 
reason, and evolve.

7.7  DART Constructivist Learning Concepts

Here we will discuss constructivist learning concepts where learning is viewed as a 
constructive process in which the learner is building an internal illustration/repre-
sentation of knowledge, a personal interpretation of experience. This representation 
is continually open to modification, its structure and linkages forming the ground to 
which other knowledge structures are attached [190]. Learning is an active process 
in which meaning is accomplished on the basis of experience. This view of knowl-
edge does not necessarily reject the existence of the real world, and agrees that real-
ity places constrains on the concepts that are, but contends that all we know of the 
world are human interpretations of our experience of the world. Conceptual growth 
comes from the sharing of various perspectives and the simultaneous changing of 
our internal representations in response to those perspectives as well as through 
cumulative experience [14, 15].

When considering a SELF, we have to ask ourselves “what is its reality?” When 
considering human reality each person logs experiences of events. Each person will 
see reality differently and uniquely. There is also actual reality. Actual reality may 
be based on fact or perception of fact. In fact, we construct our view of the world, of 
reality, from our memories, our experiences. In Constructivist Psychology, accord-
ing to Kelly [149], constructivist philosophy is interested more in the people’s 
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construction of the world than they are in evaluating the extent to which such con-
structions are “true” in representing a presumable external reality. Thus, it makes 
sense to look at this in the form of legitimacies. What is true is factually legitimate, 
and people’s construction of an external reality is another form of legitimacy. Later 
we propose consideration of locus of control in relation to internal and external 
legitimacies/realities. Artificially cognitive systems like a SELF will have their own 
perceptions and realities, different entirely from humans. However, a SELF’s cogni-
tive framework and memories must have similar abilities to construct and rely on 
correct views of the world around if humans will eventually rely on autonomous 
systems. Thus, a priming/mentoring process will be necessary. Primer/mentors will 
need to be trained and understand artificial cognitive systems, their place in society, 
as well as ethical ramifications of employment. An entire discipline may evolve for 
creating autonomous objectives and goals within autonomous systems.

As described previously, Constructivist Psychology is a meta-theory that inte-
grates different schools of thought. According to Adlerian, in his work on therapy 
as a relational constructivist approach [3, 4], the emphasis is on the importance of 
humans as active agents in the creation of their own constructive psychology. 
Another view of humans as agents in their own consciousness [122, 123] describes 
humans as existing in a socio-cultural world of persons where the distinguishing 
characteristic of their personhood is the possession of an individual agented con-
sciousness. If the individual, or in our case a SELF, has no self-reflexive abilities, 
then it is unlikely that the entity will possess the capability to reflect critically and 
creatively about themselves and their interaction and place in their environment.  
A SELF, therefore, in order to become and remain a self-contained, completely 
autonomous entity, capable of self-assessment and self-reflection to modify its 
internal models of its environment, must possess these cognitive skills within a 
DART learning framework.

Botella [24] believed there were three main areas to consider in Constructivist 
Learning: psychological knowledge, psychological practice, and psychological 
research. In his book on Constructive Psychotherapy, Mahoney dealt with psycho-
logical knowledge [165], discussing that knowledge could not be separated from the 
process of knowing, and that all human knowing is based in value-generated 
 processes. Kvale dealt with the process of psychological research [155] in postmod-
ernism terms, viewing psychological practice not as a mapping of objective reality, 
but rather as an interactive co-construction of the subject under investigation or 
consideration. This view of psychological research is an interpretive view, requiring 
the use of hermeneutics, phenomenological, and narrative methodologies [204].

Both Kvale and Botella view constructivist learning as a meta-theory that 
assumes that knowledge is a hypothetical (anticipatory) construction. In this way it 
diverges from traditional objective views of conceptual knowledge as an internal-
ized representation of reality. A SELF utilizes the concepts of Kvale and Botella in 
its Dialectic Argument Structure (DAS) for abductive reasoning and genetically 
controlled constructivist learning methodologies for cognitive processing and learn-
ing. This leads a SELF cognitive processing system to take on an epistemic view of 
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knowledge acquisition and processing, taking into account values that are, by defi-
nition, subjective in nature. The most prevalent of these are:

• The pragmatic value of knowledge claims; i.e., their predictive efficiency, viability, 
and fertility

• The coherence of knowledge claims; i.e., their internal and external consistency 
and unifying abilities across the cognitive framework.

In their work on the biological roots of human understanding [169], Martin and 
Sugarman argued that humans are self-creating, self-producing systems and are 
capable of maintaining their own organization which performs development and 
maintenance. Hence, a SELF, extends these concepts as it also performs self- 
assessment, self-maintenance, and self-evolution as an artificial entity [107].  
We believe these concepts equate to characteristics and constraints which should be 
embedded in a SELF at start-up and initialization.

SELF Constructivist Learning is enabled by the DART cognitive learning pro-
cess, and is a building (or construction) process in which a SELF’s cognitive system 
builds an internal illustration of knowledge, based on its experiences and personal 
interpretation (fuzzy inferences) of experience. The knowledge representations and 
knowledge relativity threads within the cognitive system’s memories are continu-
ally open to modification, and the structure and linkages formed within the SELF’s 
short-term, long-term, and emotional memories, along with the contextual knowl-
edge relativity threads, form the bases for which knowledge structures are created 
and attached to the Binary Information Fragments. Learning becomes a very active 
process, where meaning is accomplished through experience, combining structural 
knowledge (knowledge provided in the beginning) with constructivist knowledge to 
provide the SELF’s view of the “real world” around it. Conceptual growth within 
the autonomous SELF would come from collaboration among all Cognitrons within 
the system, sharing their experiences and inferences; the total of which creates 
changing interpretations of their environment through their collective, cumulative 
experiences.

Therefore, one of the results of the Constructivist Learning process within the 
SELF is to gradually change the “Locus of Control,” described earlier, from  external 
to internal. Within the context of the SELF, external refers to the fact that the system 
needed external inputs in order to make sense, or infer, about its environment. 
Internal, for the SELF, implies that the system has a cumulative constructive 
 knowledge-base of information, knowledge, context, and inferences to handle a 
given situation internally; able to make relevant and meaningful decisions or infer-
ences about a situation without outside knowledge or involvement. We believe this 
 follows theories of human cognition and is possible through the use of the learning 
system we have created and the Metacognitive and Metamemory Constructs we 
have already described, along with Occam and PAC learning methods [174]. This, 
combined with the Cognitive Economy concepts, provides a vital piece of a SELF’s 
fully autonomous, cognitive framework, required for completely autonomous 
 environmental interaction, evolution, and SELF control.
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7.7.1  Adaptation of Constructivist Learning Concepts  
to the SELF

Constructivist learning concepts within the SELF DART processes are utilized to 
strengthen knowledge that has been gained through the multi-level learning pro-
cesses. This knowledge strengthening is in terms of gaining a better understanding 
of topics, information, inferences, etc. that have been learned. This can be seen as 
the process of increasing the SELF’s knowledge density (explained in Sect. 8.6) for 
topics that are part of its Conceptual Ontology. These constructivist learning pro-
cesses cooperate with the PENLPE learning management system in administering 
Cognitron goals and constraints throughout the SELF’s ISAAC cognitive process-
ing environment. These learning management algorithms help define the roles of 
the learning algorithms within the DART learning processes. The constructivist 
learning processes help establish learning Measures of Effectiveness (MOEs) 
against the goals and constraints developed by the PENLPE learning management 
processes. These constructivists learning processes utilize hypothesis generation 
and testing in cooperation with the DART knowledge acquisition and learning 
system.

The function of learning within this role is to increase the stimulus–response- 
feedback loop for knowledge carried within the SELF Cognitive Conceptual 
Ontology. In essence, this provides a synthetic “focus” for SELF conscious pro-
cesses, providing additional information, goals, and constraints for the current 
behaviors and current memories. The result is additional contextual threads 
(Knowledge Relativity threads discussed in Sect. 8.5) attached to current memories 
to provide an additional context or connectivity across a SELFs memory systems. 
As the name implies, this allows the SELF to “construct” knowledge in an orga-
nized and focused fashion, based on its current informational and knowledge acqui-
sition needs. This may include additional emotional memory triggers as well as 
additional procedural memories tied to current topical memories.

Another aspect of constructivist learning within the DART system is learning to 
acquire knowledge, in terms of understanding new information, new topics, etc., 
that have not been previously experienced or learned. Within this role, the PENLPE 
learning management system presents new information/concepts to be learned, 
based on sensory inputs that have been processed and reasoned about and corre-
lated with the current Conceptual Ontology within the ISAAC cognitive frame-
work. In this mode of learning within the DART, the role of the learning algorithms 
is re receive and processes information in order to from new concepts that must be 
added to the SELF’s Conceptual Ontology utilizing the Occam Learning algo-
rithms. The function of Occam Learning in this role is to first utilize the abductive 
hypothesis generation process (Sect. 9.1.4) to create new possible concepts to 
explain new data/information that are then utilized by the Occam Learning algo-
rithms to support or rebut the hypotheses, and in the end, strengthen the learning 
system with the new concepts whose hypotheses are found to be supportable. 
Knowledge Relativity threads are attached to the new concepts, based on the output 
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of the Topical Maps. This provides for the creation of initial Binary Information 
Fragments and possibly new or amended emotional and procedural memories 
within the SELF memory systems.

The last aspect of constructivist learning utilized within the SELF DART system 
is learning used to construct knowledge, meaning to create a knowledge representa-
tion within SELF memories and create meaningful connections (Knowledge 
Relativity Threads) between knowledge. The role of the PENLPE Learning 
Management System here is to provide cognitive guidance and modeling within the 
ISAAC cognitive framework. This involves deconstructing information into man-
ageable information fragment objects, correlating and integrating these new memo-
ries into the SELF’s current memory structure. The DART then must encode these 
new information fragment objects, based on the Knowledge Relativity Threads and 
Information Encoding schemes, to create Binary Information Fragments. The over-
all role of the DART learning algorithms here is for reasoning and analysis of data/
information to determine the stimulus/response goals and constraints that must be 
added to the system to handle these new memories. This facilitates “making sense” 
of the information and constructing knowledge representations for the new informa-
tion. The functions for the DART learning algorithms in this mode of constructivist 
learning is to create meaningful information fragment representations and contex-
tual information in order to allow the SELF memory system to integrate and assimi-
late these new Binary Information Fragments into the SELF’s long-term memory 
(memory organization and integration). The overall focus of constructivist learning 
in this role is to provide active or conscious learning, utilizing a variety of cognitive 
processes involving Reasoner and Analyst Cognitrons during the learning process, 
including the construction of emotional contexts for these new memories.

7.8  Discussion

Human cognitive processes rely on the ability extract and generalize knowledge 
(reason) from a few specific examples. We discussed the basic types of reasoning in 
Chap. 2. Chapter 8 presents the SELF’s reasoning framework, beginning with a 
discussion of human reasoning and describe the architecture and processes for 
human-like reasoning within the SELF.

7.8  Discussion
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As explained earlier, the ability to reason within a SELF denotes the ability to infer 
about information, knowledge, observations, and experiences, and affect internal 
changes that enable it to perform new tasks previously unknown or to perform tasks 
already learned more efficiently. The act of reasoning, or inferring, allows a SELF 
to construct or modify representations of experiencing and learning. Reasoning 
allows a SELF to fill in skeletal or incomplete information or specification (self- 
assessment). Hence, this chapter is devoted to architectures and frameworks to 
enable artificial reasoning within a SELF’s cognitive processes that synthesizes 
human reasoning. First, we will discuss the various stages and forms of human 
reasoning. The rest of the chapter is devoted to adapting human reasoning concepts 
into SELF reasoning architectures.

8.1  Human Reasoning Concepts

Human reasoning is dynamic and complex involving significant numbers of inter-
twined complex processes. There are different types of reasoning necessary to allow 
humans to navigate their world effectively and efficiently. A brief overview is pro-
vided; as the topic of human reasoning is vast. First, an overview of brain theory is 
provided, followed by logical reasoning considerations, as well as, moral, ethical, 
and emotional reasoning. Finally, we consider implicit and explicit reasoning.

Significant information is ingested simultaneously into the brain and it is there-
fore impossible to consciously be aware of it all. Imagine for just a minute how 
many discrete activities the human brain is handling in one instant. Memories, asso-
ciations, habitual ways of thinking, beliefs, assumptions, predictions, experiences, 
past, present, and planned comprise the short list. We have senses and perceptions. 
We have defense mechanisms and feelings. Needless to say, our brains are active! 
Hence, it is difficult to imagine what all occurs in a single instant of human experi-
ence, but it is ultimately essential to explore in order to understand how to translate 
the concepts in realistic and efficient artificial reasoning.

Chapter 8
Synthetic Reasoning
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8.1.1  Human Thinking

It is general knowledge that there are different functional reasoning components and 
processing regions of the brain. The frontal cortex is responsible for executive func-
tions, the limbic system (emotions), and others are described throughout the book. 
Each region of the brain is made up of significant numbers of neurons, chemical 
transmitters, and electrical activity. The following subsections describe types of 
human reasoning beyond the physical aspects of brain function: Specifically, there 
are three main theories of human reasoning:

• Modular reasoning
• Distributive reasoning
• Collaborative reasoning

8.1.2  Modular Reasoning

Cognitive modularity seems to have flourished with Fodor [115]. He articulated that 
humans use domain-specific modules that together form part of the reasoning sys-
tem within the human brain. According to Fodor, there are conditions for modular 
cognition; one is that other parts of the brain have limited access to each reasoning 
module. This type of reasoning is mandatory, innate, shallow and very fast. He also 
stipulated that each module was fixed to a neural architecture and that information 
was encapsulated; since other modules have limited access to each other. More 
modern psychology believes that cognitive modularity as actually massive modular-
ity. This school of thought suggests that the mind is even more modular with spe-
cific functions and specialization [118]. This type of Modular Reasoning is used 
within SELF Sensory Processing, before Sensory Integration. There are differing 
views on massive modularity. According to Raymond Gibbs and Van Orden [119], 
massive modularity theory has empirical problems. They state that studies fail to be 
able to separate modules. They also argue that massive modularity theory fails to 
discover input criteria and state that massive modularity may be impossible given 
the nature of context embedded within human nature. Lastly they argue that massive 
modularity does not acknowledge the interaction of brain, body, and world in human 
thinking.

8.1.3  Distributed Reasoning

Distributed theory suggests that there is more to the brain than massive modularity. 
Beyond some very specific areas such and motor control, distributed reasoning the-
ory suggests that there exist many fuzzy connections between systems of the brain. 
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The distributed theory challenges boundaries of the mind and body taking into 
account the environment, artifacts, and specific characteristics of differing people. 
This theory is reflected in the Fuzzy, Possibilistic Abductive Network utilized 
within a SELF’s cognitive framework.

The distributive reasoning theory by Hutchins [138] provides some insights into 
human reasoning. Hutchins provides five different models that affect human reason-
ing. First, he postulates that there are modules within the brain that are specialized 
in function and structure and are united in a complex way. Second, he argues that 
cognition at a macro level is distributed outside the individual; such as the media. 
Media can be internal and external. Third, there is human culture which influences 
the individual. Fourth, there is society which cognitive activity is distributed in 
tools, rules, and contexts. Finally, he argues that cognition is distributive in time, 
both vertical and lateral time dimensions of the subject [195].

Yvonne Rogers [195] provides a detailed analysis of the distributive cognitive 
model. Rogers cites Hutchins as creating a computational model of two modules 
of the brain that can together recover depth that neither module alone could do. 
One general assumption of the distributive human cognitive system is that it is 
made of more than one module and that each module in the cognitive system has 
different cognitive properties than the individual, and is different than the cogni-
tive brain as a whole. Another general assumption made by Rogers is that mem-
bers (modules) of the system have knowledge that is both variable and redundant 
and that members of the system can pool resources. Another is distribution of 
access to information. This enables the coordination of expectations and coordina-
tion of action within the human biological reasoning framework [195]. These con-
cepts are utilized throughout a SELF, which utilizes localized processing modules 
(processing “experts”) as well as distributed Cognitron experts that communicate 
and collaborate throughout a SELF cognitive system. This type of reasoning is 
discussed next.

8.1.4  Collaborative Reasoning

The collaboration theory suggests that both modular and distributed forms of pro-
cessing occur within the human reasoning framework, and that it is a matter of 
degrees of each. We may be able to see this in example of small groups. If we con-
sider the degrees of modular and collaborative reasoning we may have something 
like this: modular theory is represented by the individual thinking/reasoning inter-
nally and distributive theory is represented by the individual thinking and then being 
influenced by their environment. So on one end of the spectrum, individuals reason 
by employing brain modules. In the middle, individuals reason with thinking mod-
ules and with internal and external relationships, and with time. On the other 
extreme, thinking may be largely environmental, external, and limited individual 
thinking such as group think.

8.1  Human Reasoning Concepts
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Group think is where members of a group think alike and fail to challenge 
alternative thinking and believe their way is the best way. The group tends to have a 
“group mind” only without any differences from individual members and hence, 
come to conclusions as a whole void of valuable diversity. Historically, it is well 
known that many mistakes have been made in decisions where group think created 
an environment of blindness inconsiderate of any outside view, individualism, or 
diversity of thought.

Modularity has become more complex as the field advances, moving from modu-
lar to massive modular. Each acknowledges modular function but the latter evolving 
to become more specified and specialized. Empirical study becomes more difficult 
affected as the level of volume and complexity increase. This shift from modular to 
massively modular shifts in levels or degrees and thus, is similarly in line with the 
collaboration theory of degrees, which states that Modularity and Distributed are 
both not only possible, but likely a matter of degrees.

8.2  Types of Reasoning

8.2.1  Logical Reasoning

There are three major human reasoning strategies: inductive, deductive, and 
abductive.

Inductive Reasoning: Inductive reasoning involves concluding after evaluating 
facts; reasoning from specific facts to a general conclusion and allowing for infer-
encing. It also requires human experience to validate conclusions. An example 
might be: Zebras at the zoo have stripes, therefore all zebras have stripes [97].

Deductive Reasoning: Deductive reasoning is just the opposite. Deductive reasoning 
moves from general principle to specificity. This type of reasoning is based upon 
accepted truths. An example of deductive reasoning might be: I know that all zebras 
have stripes therefore when I go to the zoo, if I see a zebra, it will have stripes.

Abductive Reasoning: Abductive reasoning allows for explanatory hypothesis 
generation or generating ideas outside of the given facts to explain something that 
has no immediate satisfactory explanation.

There are a number of ways in which people reason, but most often human rea-
soning follows either inductive or deductive reasoning. Other ways that humans 
reason includes cause and effect reasoning where causes and after effects are con-
sidered. Analogical reasoning is a way of relating things to other novel situations. 
Comparative reasoning as it implies involves comparing things. Still another rea-
soning method is conditional or if/then reasoning. Many of us have used the pros 
and cons methods of reasoning as well. Systemic reasoning involves thinking  
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that the whole is greater than the sum of its parts, and finally reasoning by using 
examples or analogies. Hence, there are numerous logical ways in which people 
reason about events and situations.

8.2.2  Humans and Inductive/Deductive Reasoning

Some believe that there are only the two types of reasoning: inductive and deductive. 
Lance Rips [193] writes about these considering them as Strict and Loose reasoning. 
Loose reasoning is a continuous process of updating confidence of a belief. Any belief 
can raise or lower confidence in this view of reasoning. Inductive reasoning follows 
“loose reasoning” and deductive reasoning follows a more strict view of reasoning. 
Arguments can be deductively valid and inductively strong. Therefore, these forms of 
reasoning may not operate very differently in the human brain. To believe something, 
means to increase our confidence in it. Hence, if these reasoning processes can be com-
bined as one psychological process then an important task would be to describe the 
different types of process manifestation. The author suggests physical examples where 
reasoning could be explored, such as in parallel networks or production systems.

Jonathan Evans and his colleagues [114] studied different theories of reasoning 
and concluded that all formal reasoning theories state that humans possess inference 
rules. Other theories such as mental models theories [143] proposed that human 
reasoning is semantic versus syntactic. Reasoning relies on systematic processes to 
construct and evaluate mental models [32]. Another major reasoning theory pro-
poses domain-sensitive rules or schemas. People tend to abstract schemas or struc-
ture within domains where they have relevant experience. Lastly, there is a heuristics 
and biases approach to reasoning [113]. In heuristic reasoning, subjects’ reason 
about features perceived as relevant.

8.2.3  Moral and Ethical Reasoning

Moral reasoning is reason that considers benefits to other, self, or society. Lawrence 
Kohlberg [151, 152] theorized that moral development progresses in three phases: 
Pre-Conventional, Conventional Morality, and Post-Conventional Morality phases.

Pre-Conventional Phase: The Pre-Conventional phase, includes two stages. The 
first stage is a Punishment-Obedience Orientation. The goal of this reasoning is to 
avoid being punished. The second stage is an Instrumental Relativist stage. In this 
stage the reasoning goal is to primarily meet one’s own needs and  occasionally meet 
the needs of others.

Conventional Morality Phase: Conventional Morality also contains two stages. 
The first is Good Boy-Nice Girl Orientation. This stage of reasoning is based 
upon what others may think of me. The next stage is Law and Order Orientation. 
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This reasoning develops from what is right and just and orients an individual to a 
fixed set of rules.

Post-Conventional Morality Phase: The Post Conventional Morality has two 
stages. The first stage is Social Contract Orientation and deals with social utility and 
the possibility of changing a set of rules for the benefit of society and considers 
individual rights [31]. The final stage is Universal Ethical Principle. In this stage 
dilemmas may be thought about abstractly considering universal principles of 
 justice, reciprocity, and respect for individualism.

Why is moral reasoning important? It is a way that humans solve problems, and 
comprises logic leading humans to dilemmas. There does not exist a clear-cut, right 
and wrong answer to dilemmas. Hence, humans follow a way of thinking that leads 
to an ethical decision. Typically ethical reasoning follows a set of specific steps. 
Many professions have their ethical codes and decision-making models to follow. 
Some of these are complex and lengthy and lead humans to come to conclusions 
based on rules of thinking or operating.

8.3  SELF Reasoning

As discussed above, reasoning takes on a number of forms, but two important forms 
comprising a SELF are induction and abduction:

• Induction: Extrapolates from information and experiences to make accurate pre-
dictions about future situations.

• Abduction: Genetic algorithms generate populations of hypotheses and a 
Dialectic Argument (Tolmin) Structure is used to reason about and learn about a 
given set of information, experiences, or situations, also called “Concept 
Learning.”

Earlier we briefly discussed the Dialectic Argument Structure (DAS). This sec-
tion provides more detail of its architecture and design. The Dialectic Argument 
Structure seeks answers to questions that require interplay between doubt and 
belief, where knowledge is understood to be fallible. This humanistic ‘playfulness’ 
of compare and contrast is a key to searching and exploring information. We pro-
pose that utilizing this framework for reasoning about information, hypotheses, and 
problems provides a robust, adaptive information processing system capable of han-
dling new situations. DAS utilizes abductive logic, sometimes called critical think-
ing, in order to distinguish it from more formal logic methods like deduction and 
induction. Whereas data mining utilizes induction to develop assertions that are 
probably true, the dialectic search uses abductive logic methods and processes to 
develop hypotheses that are possibly true. DAS specifically avoids Bayesian meth-
ods because they cannot measure possibilistics, but instead measure probabilistic 
metrics. Instead we utilize a fuzzy implementation of Renyi’s entropy and mutual 
information theory to provide a possibilistic measure of mutual information and 
topical separation [194].
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8.4  Abductive Reasoning: Possibilistic, Neural Networks

The original McCulloch-Pitts model of a neuron contributes greatly to our under-
standing of neuron-based systems. However, the model failed to take into account 
that the simplest human nerve cell types exhibit non-deterministic behavior [177, 
178]. Some have attempted compensation by modeling as a function of randomness, 
creating a stochastic neural network. However, much of the behavior is not random, 
and carries imprecision, associated with lacking sharp transition from occurrence to 
non-occurrence of a given event. This leads us to the definition of a network not 
steeped in Bayesian statistics (a Bayseian Belief Neural Network – BBNN), but one 
utilizing possibilistics, based upon a humanistic environment of fuzzy characteris-
tics, combined with an abductive, hypothesis-based decision network; and thus cre-
ating a Possibilistic, Abductive Neural Network (PANN) [38]. Here we discuss the 
theory and architecture for a Possibilistic, Abductive Neural Network capable of 
complex hypothesis generation and testing, leading to artificial creativity and dis-
covery within an artificially intelligent system [100, 101].

8.4.1  Artificial Creativity

Neuroscience research into human perception [225] determined that noise and 
imprecision in the human nervous system was not, in fact, inconvenient, but was 
actually essential to the types of computations the brain performed [84]. The brain 
learns to make spatio-temporal associations in the presence of noisy, imprecise 
information. Therefore, we propose that any artificially intelligent system that tries 
to emulate human processing must be able to make similar noisy, imprecise associa-
tions within its artificial neural systems even when they are incomplete, imprecise, 
or contain conflicting information while simultaneously properly representing cur-
rency of entity behavior, i.e., accounting for its real-time internal state [22, 57, 59].

A Possibilistic, Abductive Neural Network (PANN) architecture that is capable 
of complex hypothesis generation and testing in the presence of multiple, noise, 
imprecise, and possibly incomplete information is inherently necessary for the 
types of environments an autonomous SELF is likely to operate within. These con-
ditions define typical real-time processing situations which require specialized pro-
cessing essential for developing realistic complex decision support systems that can 
learn, reason, analyze, and make critical decisions in real-world environments.

8.4.2  Creativity Through Problem Solving

Touring and others have hypothesized that computers cannot be creative, due to the 
absence of novelty in its flow of information processing. The use of stochastic, pos-
sibilistic abductive networks provides an approach to information processing, 
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allowing the artificially intelligent system to vary its information processing 
flow, depending upon continuously changing generated hypotheses and continu-
ously recombinant neural fiber network creation processes described earlier [57, 
184, 229].

One hypothesis we propose to consider here is that creativity is directly related 
to problem solving activities in which explorations of problem spaces lead to the 
expansion of belief domains. A successful expansion of beliefs is initiated by 
recombinant updates of a cognitive system’s Conceptual Ontology [191, 204, 229].

General heuristics used as continuous pedigree input within the genetic hypoth-
esis generation process guide the support and rebuttal informational search pro-
cesses and problem solving activities; which include strategies for examining, 
comparing, altering and combining concepts, strings of symbols, and the heuristics 
themselves [229].

But what kind of creativity is possible for the AI system in this context? We 
believe the answer is that it is similar to the one which humans experience in our 
everyday life: the experience of new and original ideas that have value, based on the 
overall goals, constraints, and mission directives of the environment the AI system 
is within.

Within this context, we describe the design of a PANN as a candidate to facilitate 
artificial creativity, and therefore autonomous, real-time decision support, as a pri-
mary objective; the abductive dialectic argument structure provides an inference 
engine upon which artificial creative reasoning in a SELF is based. Hence, 
Cognitrons and the Dialectic Argument Structure (DAS), which comprise the core 
primitive SELF foundational abductive reasoning components, are now expounded 
upon in the subsequent paragraphs.

Cognitrons are currently composed in Java and are employed together as part of 
a Java processing framework creating a synthetic PANN. Cognitrons are used to 
mimic human reasoning. The Java based Cognitron architecture framework and 
toolkit is utilized for constructing a system of dynamically changing Cognitron 
functions and applications for problem solving within a SELF cognitive system. 
Together, this toolkit allows a SELF’s Artificial Prefrontal Cortex the ability to build 
a PANN’s multi-Cognitron autonomous decision support system [63]. This system 
includes a framework for providing business rules and policies for run-time sys-
tems, and the autonomic abductive computing core technology. Hence, the next 
section describes the Dialectic Argument Structure and its use in Abductive 
Reasoning [37].

8.4.3  Dialectic Reasoning Framework

The Dialectic Search is a reasoning framework which seeks answers to questions 
that require interplay between doubt and belief, where knowledge is understood to 
be fallible. Cognitrons which support the Dialectic framework learn and reason 
about information, hypotheses, and problems and provide the adaptive information 
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processing system proposed for handling new situations. The key value of Cognitrons 
within the Dialectic Search reasoning framework is their ability to learn from sen-
sory data and from each other. Using learning methods discussed in Chap. 7, 
Cognitrons provide the operations and analytical structures used to extract knowl-
edge and context from various sources of information. Cognitrons are cloned/scaled 
dynamically as system resources allow. Other types of Cognitrons are utilized by 
the Dialectic Search to provide Artificial Cognition [78, 79] and the Artificial 
Prefrontal Cortex (Mediator) [80] autonomous processing capabilities.

In the Dialectic Search processes, information is utilized to generate and assess 
hypotheses from thought processes continuously matured by Cognitrons, which 
learn and reason about the hypotheses and information with a Dialectic Argument 
Structure. As explained in Chap. 4, Cognitrons are autonomous software agents that 
create the essence of an information agent ecosystem. They comprehend SELF 
external and internal environments and act upon it over time, in pursuit of an a priori 
given and self-developing humanistic agenda and goals, to affect what it can com-
prehend as it learns.

The Dialectic Search uses the Toulmin Argument Structure to find and relate 
information that matures and shapes a larger learned argument, or intelligence lead. 
The Dialectic Search Argument (DSA), illustrated in Fig. 4.13, has four 
components:

 1. Data: in support of the argument and rebutting the argument.
 2. Warrant and Backing: explaining and validating the argument.
 3. Claim: defining the argument characteristics and criteria.
 4. Fuzzy Inference: relating and maturing the data to the claim.

The Dialectic Search process, called Dialectic Search Argument (DSA) serves 
two distinct purposes within the reasoning framework. First, it provides an effec-
tive basis for mimicking human reasoning. Second, it provides a means to glean 
relevant information from the Topic Map [199] and transform it into actionable 
intelligence (practical knowledge.) These two purposes work together to provide 
an intelligent system that captures the capabilities of human Intelligence to sort 
through diverse information and find clues that support the ability to make action-
able decisions.

This approach is considered dialectic in that it does not depend on deductive or 
inductive logic, though these may be included as part of the warrant. Instead, the 
DSA depends on non-analytic inferences to find new possibilities based upon war-
rant examples. The DSA is dialectic because its reasoning is based upon what is 
plausible or possible; the DSA is a hypothesis fabricated from changing and refining 
bits or fragments of information.

Once the examples of information that are relevant to the hypotheses topics have 
been detected, data that fits the support and rebuttal requirements is used to instanti-
ate a new claim. This claim is then used to invoke one or more new DSAs that per-
form appropriate contextual searches. The developing lattice forms the reasoning 
that renders the intelligence lead plausible and enables measurement of the 
possibility.
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As the lattice develops, the aggregate possibility is computed using the fuzzy 
membership values of the support and rebuttal information. Eventually, a DSA 
lattice is formed that relates information with its computed possibility. The compu-
tation, based on Renyi’s entropy theory, uses joint information memberships to gen-
erate a robust measure of Possibility, a process that is not achievable using Bayesian 
methods.

Figure 4.13 illustrated a SELF DAS Architecture that is used to implement DAS 
based Cognitrons: the Coordinator, the Dialectic Argument Search (DAS) and the 
Search, work together, each with a separate and distinct learning objective. The 
Coordinator is taught to watch the FUSE-SEM topical maps, responding to newly 
discovered inputs that conform to patterns of known interest. When an interesting 
input is received, the Coordinator selects one or more candidate DAS Cognitrons, 
and then spawns Search Cognitrons to find information relevant to each DAS. Over 
time, the Coordinator learns which patterns are most likely to yield a promising 
lead, adapting to changes in the FUSE-SEM topical map structure and sharing what 
it learns with other active Coordinators.

Search Cognitrons utilize DAS prototype search vectors and, through the FUSE- 
SEM topical map, finds information that is relevant and related. The Search 
Cognitron learns to adapt to different and changing source formats and dynamically 
modifies parsing procedures required to extract newly discovered detailed informa-
tion. The final Cognitron, the DAS, learns fuzzy patterns and uses this to evaluate 
information found by the Search Cognitron. Any information that does not quite fit 
is directed to a sandbox where peer Cognitrons can exercise a more rigorous aggres-
sive routine to search for alternative hypotheses.

The principal requirements addressed with Cognitrons are:

 1. Learning to adapt to changes in the surrounding environment.
 2. Capturing knowledge for reuse.
 3. Sharing of information and learning between Cognitron peers.
 4. Hypothesizing in the form of humanistic on-the-job-training
 5. Remembering to avoid old mistakes and false leads.

A similar diagram can be drawn for the FUSE-SEM topical map where the Search 
Cognitron draws information out of heterogeneous sources, the DAS is replaced by 
a FUSE-SEM topical map, and the Coordinator is a specialized FUSE- SEM with its 
own specific ontology. The complete process for information search is illustrated in 
Fig. 8.1. Steps 1, 2 and 4 initialize the process by building the FUSE- SEM topical 
maps and teaching each DAS what to search for. Steps 3, 5 and 6 are recurring steps 
as information is gathered and more leads are discovered. Steps 4 and 7 are also 
recurring as the DAS discovers and adapts to new types of information.

Measures of information possibility (certainty) alerts inform an Interface 
Cognitron of information available for review. PANN constructs are then used to 
rank information and flag content considered to be most certain. Review can then be 
facilitated via user presentation of the DAS warrant, pedigree and reference links to 
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support and rebuttal sources, compared back through the FUSE-SEM topical map. 
Based upon a review, a user may elect to refine DAS training or further browse the 
Topic Map to rapidly generate alternatives within the DAS that better represents a 
new lead.

Otherwise, the information search process is also automated, and includes a 
review process which engages the Artificial Pre-frontal Cortex (APC) in a model 
review process described earlier, where a Fuzzy, Unsupervised, active resonance 
theory, Neural Network (FuNN) is then used to continuously develop the DAS den-
sity. FuNN critical learning objectives include, but are not limited to, the following:

 1. DAS must be able to search and track using the signature of a particular Topic of 
Interest (TOI),

 2. DAS must be able to investigate semantic anomalies found in computation of 
possibilities caused by information obfuscation,

 3. DAS must be able to continuously review its internal FuNN developed 
adaptations,

 4. As adaptations are discovered to be invalid, a DAS must be able to learn addi-
tional support/rebuttal arguments for adaptation re-occurrence prevention.

This review process enables a FuNN to learn from either a user or data mining 
interface. The resulting knowledge is shared across a SELF cognitive framework 
via each developed DAS, enabling sharing of the semantic corpus of knowledge 
essence representation.
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8.4.4  FuNN Creating DAS

Each DAS is implemented via a FuNN as illustrated in Fig. 8.2. The FuNN is able 
to learn both fuzzy possibilistic rules and fuzzy sets using the warrant for training 
data (reference Fig. 4.12). Changing its structure and its weights, the network con-
verges to a state that maximizes likelihood and minimizes Renyi’s entropy.

Each FuNN is interpreted using relative connections and membership functions 
to generate a lattice that interconnects the FUSE-SEM topical map input using 
fuzzy possibilistic connections illustrated in Fig. 8.3. Possibilistic is an assessment 
of the plausibility of the DAS. The confidence bound, derived from the FUSE-SEM 
topical map and FuNN fuzziness, represents a measure of semantic fit.
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Fig. 8.2 A SELF DAS implemented as a FuNN
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Fig. 8.3 SELF fuzzy possibilistic lattice connections

8 Synthetic Reasoning

http://dx.doi.org/10.1007/978-1-4614-8072-3_4


www.manaraa.com

147

A DAS lattice is used to explain the information, compute the overall possibilis-
tics, based upon the fuzziness of the support, and rebuttal information, and compute 
the sensitivity of the claim relative to the fuzziness of the input data. Being able to 
review the lattice and assess its sensitivity to the ambiguity of the input data enables 
effective assessment of lead quality.

8.4.5  DAS Reasoning Approximation

The approximation system for autonomous reasoning using a DAS is comprised of 
a Fuzzy Inference Engine, Cognitrons, and Cognitron infrastructure. This system 
employs the soft computing techniques explained in Chap. 10 to generate Cognitrons 
for mimicking human reasoning to process information and develop intelligence. 
Figure 8.4 depicts a high-level view of the inference and cognitive management 
architecture for a SELF, known as the Polymorphic Evolving, Neural Learning and 
Processing Environment (PENLPE).

Figure 8.4 provides a data flow view PENLPE; the interactions of the FUSE- 
SEM topical maps, and the various Cognitrons. In the PENLPE process shown in 
Fig. 8.4, the FUSE-SEM topical maps are used to correlate new information with 
current topical information contained in a SELF’s Conceptual Ontology. The new 
information is also fed to other topical maps in order to understand the contextual 
relevance between topics. From this contextual information, Knowledge Relativity 
threads are created and attached to the new information objects. This topical and 
contextual information is then stored and the combined knowledge objects are sent 
to active Reasoner and Analyst Cognitrons This process includes Search Information 
Cognitrons that mine through multiple sources to provide data/information to other 
Cognitrons throughout the PENLPE, called the Federated Search, shown in Fig. 8.5.
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8.4.6  Cognitron Archetype Descriptions

Figure 4.10 illustrated the basic Cognitron archetypes. Figures 8.6, 8.7, and 8.8 
provide explanations of these Cognitrons archetypes. These provide the context- 
sensitive reasoning structure for a SELF PENLPE reasoning framework.

Notice that the Cognitron process described in Fig. 8.5 includes the use of Subject 
Matter Expert Cognitrons in order to provide initial information to PENLPE. The 
system does not spontaneously generate initial knowledge; it must ingest information 
to learn from, created from the autonomous Model-Based process described earlier. 
This can include a learning based question and answer processing architecture that 
allows PENLPE to ask questions, based upon contextual understanding of the infor-
mation it is processing, and extract answers, either from its own inference engines, its 
own memories, other information contained in its storage systems, or outside infor-
mation from other information sources. This process is illustrated in Fig. 8.9.

The PENLPE Cognitron processing environment allows data to be processed into 
relevant, actionable knowledge. Situational management is one of the most innovative 
components of PENLPE. Utilizing the ACNF framework within PENLPE, it can 
 provide real-time processing of dynamic, situational awareness information.

The information gathering, processing, and analyzing within PENLPE is performed 
continually to keep track of current trends in the context of current situations,  
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both locally and globally across the corpus of knowledge, and then  provide timely and 
accurate knowledge to allow users or a SELF to anticipate and respond to what is hap-
pening in a changing environment. To achieve a combination of awareness, flexibility, 
and agility involves dynamic and flexible processes that adapt and morph as situations 
change. This is possible with learning, evolving, Cognitrons, like those found in the 
PENLPE processing environment.

Data Steward Cognitrons support growing volumes of data and allow Reasoner 
Cognitrons to produce accurate and relevant metrics about past, current, and future 
 situations (prognostics). Through inter-Cognitron communication, they provide control 
and visibility into the entire processing enterprise. This is made possible by integrating 
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PENLPE into a flexible, distributed processing architecture that enables secure 
 collaboration, advanced information management, dynamic system updates, and 
 customer, rule-based processes (Advisor Cognitrons).

8.4.7  The Fuzzy, Unsupervised, Active Resonance Theory, 
Neural Network (FUNN)

The basic FUNN was illustrated in Fig. 8.2 above. While the internal structure of the 
FUNN can evolve over time as the system learns and evolves, the basic structure com-
prises five layers with “expert” nodes at each layer, which determine layer promotion 

paths for information residing at each layer. Each node within a layer consists of  

an input integration function, a fuzzy classifier f u u u w w wi i
n
i fi fi

n
fi

1 2 1 2, , , ; , ,,… …( ), and an 

output activation function, processing algorithm a f u u u w w wi i
n
i fi fi

n
fi

1 2 1 2, , , ; , ,,… …( )( ), 
which determines how the information is processed at the next internal fuzzy layer 
within the FuNN. Figure 8.10 illustrates this process.

Where:

 
f u u u w w wi i

n
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n
fi
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(8.1)

corresponds to a stochasto-chaotic differential equation, and

 
a f u u u w w wi i

n
i fi fi

n
fi

1 2 1 2, , , ; , ,,… …( )( )
 

(8.2)

interprets increases or decreases in entropic constraints of the differential equation, 
based on Renyi’s entropy definition.
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8.5  Cognitron Theory

The notion of an intelligent software agent is not new, and has been an object of 
research for decades in such fields as psychology, sociology and, of course, in com-
puter science. Strangely, exactly defining what an intelligent software agent is, has 
only been intensively researched over the last number years. SELF software agents, 
Cognitrons, continuously carry the all-important cognitive artifacts and are there-
fore the heart of a SELF cognitive framework.

Because the term “agent” has been used by many, in many different ways, it 
has become relatively ambiguous and difficult to estimate the possibilities agent 
technology can afford. Consequently, there are more definitions than there are 
working examples of systems that could be called agent-based [231]. The misuse of 
the term ‘Intelligent Software Agent’ has caused many, unjustly, to draw the 
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conclusion that software agent technologies, as a whole, do not offer much to the 
field of software engineering, and to Artificial Intelligence, in particular [230]. 
Therefore, we provide an overview of software agent theory and practice, to set the 
proper context for Cognitron usage and Intelligent Software Agent development.

8.5.1  Intelligent Software Agent Definition

We will not attempt to come to a rock-solid formal definition of the concept “agent”. 
Given the multiplicity of roles agents can play, this is quite impossible and even 
very impractical. However, it is possible to put forth a definition, or notion, of an 
intelligent software agent.

Fig. 8.10 Basic structure of a node within the SELF FUNN
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Next, we provide a list of general characteristics that, together, provide a suitable 
notion or impression of an intelligent software agent. The next section describes a 
set of characteristics that notionally describe a “weak software agent”, followed by 
a set of characteristics to describe a “strong software agent.” In both, ‘intelligence’ 
is considered within context of weak and strong agents.

8.5.2  Weak Intelligent Software Agents

Perhaps the most general way in which the term agent is used, is to connote a 
software- based computer system that enjoys the following properties:

• Autonomy: agents operate without the direct intervention of humans or others, 
and have control over some if not all of their actions and internal state.

• Social Ability: agents can interact with other agents and humans via discrete 
interfaces and/or communication language.

• Reactivity: agents perceive their environment (which may be the physical world, 
a user via a graphical user interface, a collection of other agents, the Internet, or 
 perhaps all of these combined), and respond in a timely fashion to changes that 
occur in it. This can entail that an agent spends most of its time in a sleep state, 
only awakening if certain changes in its environment (like the arrival of new 
message) occur.

• Proactivity: agents do not only act in response to their environment; they are able 
to exhibit goal-directed behavior and hence can take the initiative.

• Temporal Continuity: autonomous agents are continuously running processes 
 (foreground or sleeping/passive in the background), not singleton or once-only com-
putations or scripts that map a single input to a single output and then terminate.

• Goal Oriented: an agent is capable of handling ambiguous, complex, high-level 
tasks. Operational decision changes, such as optimized task splitting into smaller 
sub-tasks, and/or sequencing/ordering of sub-tasks are also performed by the 
agent.

Thus, a simple way of conceptualizing an agent is as a software process, which 
exhibits the properties listed above. A clear example of an agent that meets the weak 
notion of an agent is the so-called softbot (‘software robot’). This is an agent that is 
active in a software environment (e.g., a Linux operating system environment).

8.5.3  Intelligent Software Agents

For some researchers – particularly those working in the field of Artificial 
Intelligence – the term agent has a stronger and more specific meaning than what 
was sketched out in the previous section. These researchers generally mean an agent 

8.5  Cognitron Theory



www.manaraa.com

154

to be a computer system that, in addition to the properties previously identified, is 
either conceptualized or implemented using concepts that are more usually applied 
to humans. For example, it is quite common in artificial cognitive research to char-
acterize an agent using cognitive notions, such as knowledge, belief, intention, and 
obligation. However, a SELF also considers emotions combined with agents.

Hence, software agents can be given human-like attributes representing agents 
visually by using techniques such as a emoticons or cartoon-like graphical icons or 
an animated face. Research into this matter has shown that, although agents are 
pieces of software code, people like to deal with them as if they were dealing with 
other people (regardless of the type of agent interface that is being used) [168]. 
Agents that fit the stronger notion of agent usually have one or more of the follow-
ing characteristics:

• Mobility: the ability of an agent to move around an electronic network.
• Benevolence: the assumption that agents do not have conflicting goals, and that 

every agent will therefore always try to do what is asked of it.
• Rationality: is (crudely) the assumption that an agent will act in order to achieve 

its goals and will not act in such a way as to prevent its goals being achieved – at 
least insofar as its beliefs permit.

• Adaptivity: an agent should be able to adjust itself to habits, working methods 
and preferences of its user.

• Collaboration: an agent should always validate instructions to ensure they con-
form to all conditions, goals, and constraints within a system (e.g., instructions 
that contains conflicting goals), omits important information and/or provides 
ambiguous information. For instance, an agent should interact with the external 
environment to validate assumptions such as asking questions, or build an inter-
nal model to solve problems. An agent should even be allowed to refuse to exe-
cute certain tasks, because (for instance) if they would put an unacceptable high 
load on the network resources or because it would cause damage to other users. 
Obviously, prime directives can be given that drive decisions on ultimatums.

Although no single agent possesses all these abilities, SELF Cognitrons are 
designed to capture all of them. At this moment no consensus has yet been reached 
about the relative importance (weight) of each of these characteristics in the agent 
as a whole. What most researchers have come to a consensus about is that it is these 
kinds of characteristics that distinguish agents from ordinary programs.

8.5.4  Software Agents and Intelligence

The degree of autonomy and authority vested in a software agent is called its agency. 
It can be measured at least qualitatively by the nature of the interaction between the 
agent and other entities in the system in which it operates.

At a minimum, an intelligent software agent must run asynchronously. The 
degree of agency is enhanced if an agent represents another entity (internal or 
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external) in some way. This is one of the key values of intelligent software agents. 
A more advanced agent can interact with other entities such as data, applications, or 
services. Further advanced agents collaborate and negotiate with other agents.

What exactly makes an agent “intelligent” is something that is hard to define. It 
has been the subject of many discussions in the field of Artificial Intelligence, and a 
clear answer has yet to be found. For a SELF, we define intelligence as the degree of 
reasoning and learned behavior; the Cognitrons ability to accept a set of goals and 
directives, and then carry the tasks delegated to it, within its given constraints. At a 
minimum, there must be some statement of preferences or rules, with a Fuzzy 
Inference Engine to provide a reasoning mechanist to act on the rules. For Reasoner 
and Analyst Cognitrons, it includes a model of understanding and reasoning about 
what is to be done. The ability to autonomously plan means to achieve its goals, as 
well as the ability to learn and adapt to changing environments, both internal and 
external. This adaptation is both in terms of ultimate objectives, and in terms of the 
resources available to it (Cognitive Economy and Locus of Control described earlier). 
SELF Cognitrons, similar to a human assistant, discover new relationships, connec-
tions, and concepts independently, and exploit these in anticipation of future tasks.

8.5.5  The Cognitron

The architecture for the Cognitron is based on the metaphor of software agents and 
incorporates techniques from other research fields such as distributed architectures, 
relevance feedback and active interfaces. When configuring Cognitrons for a SELF, 
the overall aim is for the system to be suitable for different types of environments. 
This is with regard to local and external searches for information and data.

One single Cognitron, called the Information Agent, is used as the interface 
between a SELF and its environment. The Info Agent, in its turn, uses an Interface 
Cognitron for handling the communication with a SELF’s sensors and external 
environment. This Cognitron is like a personal assistant who is responsible for han-
dling user needs, and for the connection of the user with the agent(s) that will help 
the Cognitrons solve their problems or tasks. The number of types of Cognitrons the 
Interface Cognitron has to deal with depends on the current goals of a SELF. As a 
result of the distributed and agent-based architecture of the system the whole struc-
ture of it can be easily changed or updated by the Artificial Prefrontal Cortex to 
accommodate changes.

The Interface Cognitron (IC) is able to reason about requests and to understand 
what type of need requests are expressing: IC singles out which of the other 
Cognitrons in the system is able and necessary to solve the current problem. Two 
other agents are Internal Services Cognitron and External Retrieval Cognitron 
shown in Fig. 8.11.

The Internal Services Cognitron knows the structure of the SELF memories and 
which are applicable in a given situation: it is in charge of retrieving data and 
information.
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The External Retrieval Cognitron is in charge of retrieving information from 
external sources (Locus of Control). It can work in two modalities: retrieval (or 
query) mode and surfing mode. In the first case, it searches for specific information: 
this service is activated by a direct internal SELF request. In the second case, the 
Cognitron navigates the external environment searching for information that, in its 
opinion, could interest a SELF. The search is driven by a SELF profile built and 
maintained by the Interface Agent

Refinement of this profile takes place according to how a SELF’s cognitive 
manages the data that the Cognitron finds for and/or proposes to a SELF. Using a 
SELF’s profile, the Interface Cognitron charges specialized agents to navigate 
through the memories or external environments, hunting for information that could 
be of some interest for a SELF. In this way, a SELF can be alerted when new data 
that can concern its interest area(s) appear. The Interface Cognitron performs the 
following tasks for a SELF’s cognitive framework:

• Assists Cognitrons in performing requests and compiling profiles for certain 
types of information needs: The other Cognitrons do not need to be aware of 
what information is available, how the information is structured or organized, 
where the information is located. This is the responsibility of the Interface 
Cognitron.

• Deduces the Cognitrons informational needs by both communicating with the 
Cognitrons and learning their behavior: The Interface Agents observe the other 
Cognitrons behavior and the current state of its environments (internal and exter-
nal – determining the “Locus of Control”) to deduce what actions are to be per-
formed and how to modify the current profiles to adapt as environments change 
(a change in the Cognitron’s Locus of Control).

The Interface Cognitron The External Retrieval
Cognitron

The Internal Services
Cognitron

Delega�on
(External Locus

of Control)

Delega�on
(Internal Locus

of Control)

Communica�on

Fig. 8.11 High level structure for the information cognitron
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• Translating the Cognitron requests and selecting other Cognitrons needed to 
solve the current set of problems or tasks: This allows the Cognitrons to ignore 
to concentrate on solving their tasks; allowing the Interface Cognitron to provide 
them with what they need to find solutions.

In general, the Cognitron framework is a Java framework for providing business 
rules and run policies for the Cognitrons, incorporating the necessary strategies into 
each type of and specific Cognitron. This includes an autonomous computing core 
technology within a SELF multi-Cognitron framework. Figure 8.12 illustrates a 
high-level Cognitron framework.

As explained earlier, SELF Cognitrons are active, persistent software compo-
nents (codelets) that perceive, reason, act, and communicate. Figure 8.13 below 
illustrates an abstract architecture for the Cognitron framework.

Cognitrons learn from experience and can be used to predict future states (prog-
nostics). They are able to analyze sensor data using classification and clustering 
techniques to detect complex states and diagnose problems (anomaly detection and 
resolution). They reason using domain-specific application objects and have auton-
omous (proactive) behavior and goals. They can correlate events to situations, rea-
sons, and take actions. All of these abilities are based upon a Cognitron component 
library (examples illustrated in Fig. 8.14), which provides strategies (algorithms) 
utilized to provide Cognitrons with the required abilities for each Cognitron arche-
type (e.g., analyst, reasoner, etc.). Figure 8.15 illustrates the Cognitron Rules 
Architecture that drives a SELF.

8.6  Knowledge Relativity and Reasoning

Research shows that generating new knowledge is accomplished via natural human 
means: mental insights, scientific inquiry process, sensing, actions, and experiences, 
while context is information, which characterizes the knowledge and gives it meaning. 
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This knowledge is acquired via the focused development of an established set of 
 criteria, approaches, designs, and analysis, as inputs into potential solutions [69]. The 
challenge within a SELF is to minimize ambiguity and fuzziness in understanding 
large volumes of complex interrelated information content via integration of two 
 cognition based frameworks. The objective is improving actionable decisions using a 
Recombinant Knowledge Assimilation (RNA) framework [229] integrated with a 
SELFs Artificial Cognitive Neural Framework (ACNF) [64] described earlier. We 
describe a SELF’s ability to recombine and assimilate knowledge based upon human 
cognitive processes which are formulated and embedded in a SELF’s recombinant 
neural fiber network of genetic algorithms and stochastic decision making towards 
minimizing ambiguity and maximizing clarity [181].

8.6.1  Knowledge Relativity

Nonaka and Takeuchi [180], when describing how Japanese companies innovate as 
knowledge creating organizations, described two types of knowledge: tacit and 
explicit. Tacit knowledge is personal and context-specific. Explicit knowledge is 
knowledge codified in books, journals and other documents for transmittal. 
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Fig. 8.13 A SELF cognitron abstract architecture
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Additionally, Nonaka [181] prescribed how dynamic organizational creation of 
knowledge needs to be strategically collected, understood, and managed across the 
entire company’s organizational structure as intellectual capital. Knowledge theo-
rist Polanyi and Sen [188], in describing what he called the “Tacit Dimension,” used 
the idea of tacit knowledge to solve Plato’s “Meno’s paradox,” that deals with the 
view that the search for knowledge is absurd, since you either already know it or 
you don’t know what you are looking for, whereby you cannot expect to find it. 
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The author argued that if tacit knowledge was a part of knowledge then “we do 
know what to look for and we also have an idea of what else we want to know,” 
therefore personal and context-specific knowledge must be included in the formal-
ization of all knowledge [61].

Renowned fuzzy logic theorist Zadeh [219], described tacit knowledge as world 
knowledge that humans retain from experiences and education, and concluded that 
current search engines with their remarkable capabilities do not have the capability 
of deduction, that is the capability to synthesize answers from bodies of information 
which reside in various parts of a knowledge base. More specifically Zadeh, 
describes fuzzy logic as a formalization of human capabilities: the capability to 
converse, reason and make rational decisions in an environment of imprecision, 
uncertainty, and incompleteness of information.

Underlying decision-making based on informational inferences is a great con-
cern, for informational ambiguity and the ramifications of erroneous inferences can 
be catastrophic. Often there can be serious consequences when actions are taken 
based upon incorrect recommendations and those can influence decision-making 
before the inaccurate inferences can be detected and/or even corrected. This is par-
ticularly a problem in intelligence processing. Underlying the data fusion domain is 
the challenge of creating actionable knowledge from information content harnessed 
from an environment of vast, exponentially growing structured and unstructured 
sources of rich complex interrelated cross-domain data.

Therefore we employ a Recombinant kNowledge Assimilation (RNA) instruc-
tional derivation, which extends space-time mechanics to provide mathematical 
relationships for n-dimensional context between knowledge objects [159]. Newell 
and Simon [177, 178] developed models of human mental processes and produced 
General Problem Solver (GPS) to perform “means-end analysis” to solve problems 
by successively reducing the difference between a present condition and the end 
goal. GPS organized knowledge into symbolic objects and related contextual infor-
mation, which were systematically stored and compared. RNA is used within a 
SELF ACNF to provide context and knowledge relativity meta-information within 
SELF analysis, reasoning, and reporting; aiding in the Cognitive Intelligence for a 
SELF, and facilitating a SELF’s top-down executive processing required for real- 
time cognitive reasoning.

The RNA theory below describes math and constructs which can be used to ana-
lyze and process knowledge and context, representing context in a knowledge man-
agement framework, comprising processes, collection, preprocessing, integration, 
modeling and representation, enabling the transition from data, information and 
knowledge to new knowledge [71]. The use of RNA provides knowledge threads for 
newly generated knowledge, storing memory context and relevance information in 
a context knowledge base and to be used by a SELF rule-based context knowledge- 
matching engine to support decision-making activities. Gupta and Govindarajan 
[124, 125] defined a theoretical knowledge framework and measured the collected 
increase of knowledge flow out of multinational corporations based upon “knowl-
edge stock” (e.g., the value placed upon the source of knowledge). Pinto [187] 
developed a conceptual and methodological framework to represent the quality of 
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knowledge found in abstracts. Suh [200] concluded that collaborative frameworks 
do not provide the contents which go in them, therefore, content was discipline spe-
cific, required subject matter experts, and clear decision making criteria. Additionally, 
Suh noted that processes promoting positive collaboration and negotiation were 
required to achieve the best knowledge available, and were characterized by process 
variables and part of what is defined as the Process Domain. The creation of SELF 
Knowledge Relativity Threads (KRTs) [229] was developed to provide a framework 
for knowledge and context, which collected and stored the knowledge as mathemat-
ical relationships along with semantic context as decisions in a knowledge reposi-
tory that corresponded to a specific context instance.

Knowledge relativity threads are needed because current databases housing vast 
bits of information, do not store the information content of the reasoning context 
used to determine their storage [109]. The knowledge collection and storage for-
mula was therefore developed to include and store relationship context along with 
knowledge, recursively. This means that, each act of knowledge and context pairing 
shown as in equation:

 i i jj K R
, ( )∑  (8.3)

and shown in Fig. 8.16, recursively examined all of the previous relationships as they 
were recombined into storage since they were all related and dependent on each other. 
Next, recursive refinement occurs, per iteration of relationship pairing. Recursive 
refinement occurs at the instance it is determined that what was found is what was 
looked for, shown as Ki( Rj ), using interrogatives, (e.g. who, what when, where, why 
and how) [133, 135, 136]. The information content contributing to finding the answer 
then has significant value and therefore, a higher degree of permanence in the mind 
of the stakeholder [6]. Therefore, the information content has reached a threshold 
where retaining the knowledge and context has become important.

8.6.2  Knowledge Relativity Threads

Figure 8.17 represents a Knowledge Relativity Thread (KRT). This approach for 
presentation of knowledge and context and was constructed to present five discrete 
attributes, namely, time, state, relationship distance, relationship value, and event 
sequence. The goal of a KRT is to map the dependencies of knowledge and related 

Fig. 8.16 Recombinant kNowledge Assimilation (RNA) equation
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attributes as knowledge is developed from information content. In this figure, the 
timeline represented by the arrow from left to right, shows the events or state transi-
tions in sequence and captures the decision points. During each of the iterations of 
the presentation of knowledge and context, intrinsic values were captured and 
placed close to each knowledge component [70]. In Fig. 8.17, these are represented 
as information fragments under the cycles. The Basic Information Decomposition 
depicts how a KRT looks when it represents information decomposed into pieces; 
in this case fragments. The triangles, depict a particular state for each of the itera-
tions, in the KRT development cycle. For emphasis, each sphere was built into the 
depiction and added in sequence to represent the fact that each information frag-
ment develops over time and follows the others. Each icon represents each informa-
tion fragment. The relative values in this Basic Knowledge Decomposition between 
each sphere are perceived to be of the same value to each other. Therefore, the lines 
are the same distance as well. Since, this base representation depicted in Fig. 8.17 
can present time, state, and sequence, as well as, relationships, the challenge was 
addressed as described by Dourish [104] to create presentation of context which can 
visually capture and manage a continually renegotiation and redefinition of context 
as development of knowledge occurs over time.

The KRT depicts cognitive comparison of not just information, but of the contex-
tual relationships as well. An important distinction about the observation of each 
comparison is that each is made from the perspective of all previously aggregated 
information, knowledge, and context.

The representation of knowledge and context formula is introduced here and is 
presented by Eq. 8.4. The independent results which follow are mathematical evalu-
ations extended from Newton’s law of gravitation shown in Eq. 8.4. Newton’s Law 
of Gravitation formula is:

 
F G

M M

r
=

( )1 2
2

 
(8.4)

where:

F is the magnitude of the gravitational force between the two objects with mass,
G is the universal gravitational constant,
M1 is the mass of the first mass,
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Fig. 8.17 A SELF RNA knowledge relativity threads
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M2 is the mass of the second mass, and
r is the distance between the two masses.

This equation was used as an analogy for the derivation of mathematical relation-
ship between a bases made up of two objects of knowledge. Abstracting Newton’s 
Law of Gravitation as an analogy of Eq. 8.1, representing relationships between two 
objects of knowledge using context, is written as Eq. 8.5 shown below, which 
describes the components of the formula for representing relationships between two 
objects of knowledge using context

 
A B

I I

c
=

( )1 2
2

 
(8.5)

where:

A is the magnitude of the attractive force between the two objects of knowledge,
B is a balance variable,
I1 is the importance measure of the first object of knowledge,
I2 is the importance measure of the second object of knowledge, and
c is the closeness between the two objects of knowledge

Comparing the parameters of Eqs. 8.4 and 8.5 F and A have similar connotations 
except F represents a force between two physical objects of mass M1 and M2 and A 
represents a stakeholder magnitude of attractive force based upon stakeholder deter-
mined importance measure factors called I1, and I2. As an analogy to F in Eq. 8.4, 
A’s strength or weakness of attraction force was also determined by the magnitude 
of the value. Hence, the greater the magnitude value, the greater the force of attrac-
tion and vice versa. The weighted factors represented the importance of the infor-
mation fragments to the relationships being formed. The Universal Gravitational 
Constant G is used to balance gravitational equations based upon the physical units 
of measurement (e.g. SI units, Planck units). B represents an analogy to G’s concept 
of a balance variable and is referred to as a constant of proportionality. For simplic-
ity, no units of measure were used within Eq. 8.5 and the values for all variables 
only showed magnitude and don’t represent physical properties (e.g. mass, weight) 
as does G. Therefore, an assumption made here is to set B to the value of 1:

For simplicity, all of these examples assume the same units and B was assumed 
to be one. The parameter c in Eq. 8.5 is taken to be analogous to r in Eq. 8.4. 
Stakeholder perceived context known as closeness c represented how closely two 
Knowledge Objects (KO) or information fragments are related. Lines with arrows 
are used to present the closeness of the relationships between two pieces of knowl-
edge presented as spheroids (see Fig. 8.18).

Using Eq. 8.2, the value of the attraction force A1→2 = 5 × 2 divided by the relative 
closeness/perceived distance2 = 1. Hence, the attraction force A in either direction 
was 10. The value of 10 is context which can be interpreted in relation to the scale. 
The largest possible value for attraction force A with the assumed important mea-
sure 1.10 scale is 100, therefore a force of attraction value of 10 was relatively small 
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compared to the maximum. This means that the next stakeholder/ researcher under-
stood that a previous stakeholder’s conveyance was of small relative overall impor-
tance. However, the closeness value of 1 showed that the two objects were very 
closely related. Figure 8.18 therefore shows that when using Eq. 8.5, if relationship 
closeness and/or perceived importance measure of the knowledge objects change 
value, as new knowledge or context is added and evaluated, then it follows that 
relationship force of attraction will change.

8.6.3  Frameworks for Contextual Knowledge Refinement

As the knowledge and context foundation described above depicts the process and 
tools for enhancing knowledge and context the Artificial Cognitive Neural 
Framework (ACNF) is utilized within a SELF to apply additional refinement con-
cepts and another formalization for the modular Decomposition and Reduction and 
Association sub-processes described in the RNA above.

Here we refer again to the ACNF discussed earlier. The Mediator (Artificial 
Prefrontal Cortex) gathers information and facilitates communication between 
agents. Hence, each decision handshake of a combined RNA-ACNF system is han-
dled by the Mediator which takes information from Cognitrons and from coalitions 
of Cognitrons and updates the short-term, long-term and episodic memories or ped-
igree [12]. The information available in memory (what the system has learned) is 
continually broadcast to the conscious Cognitrons that form the cognitive center of 
the system (i.e., they are responsible for the cognitive functionality of perception, 
consciousness, emotions, processing [93])

As described, the ACNF contains several different artificial memory systems 
(including emotional memories), each with specific purposes. Each of these 
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memory systems are stored pedigree used in the recursive RNA process and are 
integrated during the processes of relationship formation between objects of knowl-
edge and context [57].

When processing a SELF’s pedigree memory, RNA loosely categorizes the gran-
ularity of information content into knowledge and context based upon the criteria 
established by the cognitive human interaction input into the system. These loosely 
or fuzzy categories are only as fuzzy as the threshold of human understanding. 
Therefore, in order to artificially create this effect we use a SELF’s Cognitrons to 
develop fuzzy organization over time, ultimately reaching a threshold of perceived 
understanding relative to the initially specified set of criteria.

As we push to process, analyze and correlate more and more information, the 
need to combine contextual relevance with information is ever more necessary. 
Information without context is just that, devoid of real content. Instead, the system-
atic approach presented here, combining the RNA contextual approach, with a cog-
nitive framework, in the ACNF, provides the framework that can handle cognitive 
processing of information and context, turning them into actionable intelligence. 
The use of Knowledge Relativity Threads represents the next generation of infor-
mation analysis and will greatly enhance the capabilities of information processing 
systems to make sense of increasing volumes multivariate, heterogeneous informa-
tion [108].

8.7  Knowledge Density Mapping Within a SELF

Here we describe structures and mathematical derivation for structures within a 
SELF to assess a SELF’s Inference Potential. This Inference Potential is determined 
from providing a measure of the Knowledge Density and Analytical Competency of 
the information processing systems, based on the contextual assessment of the ques-
tion, or topic posed by the operator and analyst. The use of Knowledge Density and 
Analytical Competency to determine a SELF’s systems Inference Potential provides 
the methodologies to radically improve the performance and quality of SELF’s cog-
nitive processing by allowing a SELF to “self-analyze” its ability to answer ques-
tions and perform the analysis and inferences on incoming data/information.

In order to mimic real-time human decision making processes, a SELF’s cog-
nitive processing systems must be supported by information derived from the 
fusion process and must operate in a uniform and cooperative model, fusing data 
into information and knowledge so information a SELF can make informed deci-
sions [216]. One such construct that aids a SELF is the measure of a system’s 
ability to provide quality information and/or inference about a particular subject 
or question posted by Dialectic Argument Structure’s hypothesis generators. 
Described here is the mathematical derivation and development of a SELF’s 
Inference Potential. This Inference Potential is determined from providing a 
measure of the Knowledge Density and Analytical Competency of a SELF, based 
on the contextual assessment of the question, or topic posed by a SELF’s internal 
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Locus of Control system. Such a measure allows a SELF’s Artificial Prefrontal 
Cortex to quickly understand the system’s ability to provide quality knowledge 
about a subject, question, or topic, and could be used to discover knowledge holes 
or gaps in a SELF. Knowledge Density Mapping facilitates information, intelli-
gence, and memory integration, and allows faster accommodation of knowledge 
and knowledge characteristics. The Analytical Competency measure provides 
analysis, reasoning, and reporting capabilities of a SELF’s capabilities (provides 
cognitive intelligence).

8.7.1  Knowledge Density Mapping: Pathway  
to SELF Metacognition

In order for a SELF to be truly autonomous, we must provide a SELF with the ability 
to understand its own limitations and capabilities and to reason about them in light 
of the duties or missions it is given. In humans, we call this ability “Metacognition.” 
As described earlier, metacognition in humans refers to higher order thinking which 
involves active control over a SELF’s cognitive processes engaged in learning and 
performing. Activities such as planning how to approach a given task, monitoring 
comprehension, and evaluating progress toward the completion of a task are meta-
cognitive in nature [42, 202].

In order for a SELF to achieve the metacognitive abilities within the ACNF, a 
SELF must have the ability to measure its own knowledge about a particular topic 
or subject [79]. This measure of topical or subject knowledge involves measuring 
the “density” of knowledge the system possesses about this subject or topic in ques-
tion. This Knowledge Density measure is based on the number of separate informa-
tion fragments relative to the taxonomy of the topic or subject. Figure 8.19 provides 
the Knowledge Density Measure, based on separable topical information fragments 
[61]. In order to provide the parameters required to compute Knowledge Density, 
cognitive maps [8, 153] track separable information fragments by topic, as illus-
trated in Fig. 8.20.

We use knowledge fragment measurements to ensure that we only store informa-
tion relative to a topic or subject once. Information that is taken in is parsed and 
information fragments that have not been stored before are pulled out and stored in 
a cognitive map for that topic. Renyi’s entropy measurement is utilized to separate 
information into topical information fragments.

Computationally, this is difficult, however, Renyi’s measure, combined with the 
Parzen Density estimation method provides a computational model. We start by 
looking at the information densities, p(y), as a sum of related topical cognitive maps, 
each centered at yi, we get:
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Renyi’s entropy measurement is defined as [57]:

 

H Y p y dyR

y

( ) log ( )= - ò 2

 

(8.7)

Therefore, Renyi’s entropy can be computed as the sum of local information 
interactions (separate information fragments) over all pairs of informational enti-
ties. Informational associations are created within the Cognitive Topical Maps uti-
lizing the FUNN described earlier and a SELF’s Fuzzy Inference Engine, based on 
Renyi’s theoretics. We use this possibilistic network because:
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• It’s robust in the presence of inexact information.
• It utilizes conditional possibilistics

 – Mutual Information measurement
 – Joint Informational membership rather than joint probabilities

• Excellent at showing qualitative relationships not attainable with Bayesian 
methods

 – Excellent at showing qualitative relationships not attainable with Bayesian 
methods

 – Creates decisions with conditional possibilistic attributes

• More useful with general questions about a subject domain

This methodology allows a SELF’s Cognitive Topical Maps to be populated with 
separable information fragments, relative to a topic that maps to the topical taxon-
omy. This allows a measurement of the density of knowledge a system contains, 
relative to a topic or subject. Within the Knowledge Density computations, a SELF’s 
FSSOTMs are used to measure topics and how other topics relate. Knowledge 
Density is a measure of the density of knowledge a system has about a topic and the 
density of related topics that would be used to answer questions and/or analyze situ-
ations. The next piece of the Inference Potential computation is Analytical 
Competence, or, what is the competency of the current cognitive system, based on 
the current problems to be solved.

8.7.2  Analytical Competency

In order to quantifiably measure a SELF’s Inference Potential, a SELF’s internal 
assessment processes must be able to assess its ability to analyze information rela-
tive to a question or mission posed to it. We call this measure of analytical potential 
Analytical Competency. The Analytical Competency measures relative to a topic or 
subject are based on the algorithms and software that are available:

• The algorithm technical capability-what it was designed to do
• The algorithms experiences – tied to emotional memory [156]
• The algorithms body of knowledge – what it has learned

Analytical Competency is tied to “Areas of Expertise” within the AI system. 
Figure 8.21 illustrates the information flow for the Analytical Competency measure.

Respectively, the ACNF and the Cognitron coalitions become emotionally 
aroused when they form semantic and episodic memories about situations that cause 
“stress” within an artificial neural system. Stress situations may involve a loss of 
resources, new data environments that are unfamiliar, new interfaces that are intro-
duced into the environment or situations where the algorithms produced incorrect 
results. These cognitive representations of emotional situations better referred to as 
memories about emotions rather than emotional memories.
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The effects of emotional arousal on explicit memory are due to processes that are 
secondary to the activation of emotional processing systems in the ACNF [69]. 
These emotional responses or emotional memories within the algorithmic long- 
term memories provide vital information that relates to how these algorithms have 
been able to respond or not respond to given assignments, topical analysis, or mis-
sions that have been assigned to a SELF.

Activity in these areas would be detected by the cognitive coalitions and would 
lead to increases in system emotional arousal (due to activation of modulation 
within the neural structure that leads to the release of cognitive problem, solution, 
search, and emotion agents [168]. These responses are stored and utilized, in part, 
as a measure of the analytical competency of a set of algorithms that make up an 
area of expertise within a SELF. The transmittal of informational content as well as 
emotional context allows information retrieval performance to be greatly enhanced, 
allowing for “cognitive economy” within the artificial neural system [60]. The 
Analytical Competency measure is based on inputs to the areas shown in Fig. 8.21, 
illustrated in Fig. 8.22 [64].

The actual Analytical Competency measurement is computed as:
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The result is a rating from 0 to 1 of the Analytical Competency for a SELF, based 
question or mission posed, or an internal issue to be resolved. Once the Knowledge 
Density and Analytical Competency have been computed, the overall Inference 
Potential of the system for a given topic/subject/mission is:
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 IP KD AC= *  (8.12)

Producing a number between 0 and 1, where 0 means the system has no potential 
to produce a useful inference for the topic requested and 1 indicates that not only 
can the system produce useful inferences, but that the inferences will be useful and 
trustworthy.

8.8  Discussion

We have described the SELF’s processes for creating, storing, and constructing 
memories, learning, reasoning, an inferring information and knowledge throughout 
its ACNF. At a higher level, the SELF requires an overall cognitive framework that 
provides management and control of its cognitive processes. Chapter 9 will intro-
duce this overall cognitive framework that will facilitate synthetic consciousness 
within the SELF, called Intelligent information Software Agents to facilitate 
Artificial Consciousness (ISAAC). This cognitive framework utilizes the SELF’s 
Cognitrons and organizes the SELF’s processes into sub-groups that mimic the 
human brain organization (e.g., Neocortex).

8.8  Discussion
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Chapter 9
Artificial Cognitive System Architectures

Our proposed ACNF, discussed earlier in the book, provides an outline for a 
possibilistic architecture that can facilitate cognition, learning, memories, and infor-
mation processing, but it is not solely sufficient to create a comprehensive, autono-
mous SELF. An overall SELF architecture framework, along with both a knowledge 
and cognitive framework are required in order to facilitate our fully autonomous, 
cognitive, self-aware, self-assessing, SELF. We have discussed a SELF system for 
cognitive management, PENLPE, now we will look at an overall cognitive process-
ing framework, called the Intelligent information Software Agents to facilitate 
Artificial Consciousness (ISAAC). A SELF architecture, allows dynamic adap-
tation of the structural elements of the cognitive system, providing abilities to add 
and prune cognitive elements as necessary as part of SELF evolution [54]. The 
overall architecture also accommodates a variety of memory classes and algorith-
mic methods. The basic building blocks of ISAAC comprise an ACNF framework, 
Cognitron architecture, Fuzzy, Self-Organizing, Semantic Topical Maps (FUSE-
SEMs), and a comprehensive Abductive Neural Processing system, the Possibilistic 
Abductive Neural Network (PANN), for providing consciousness and SELF 
cognitive functions. Within an ISAAC framework, Cognitrons are added or 
deleted from the system, based upon the complexity of the classes of information 
processed. This chapter expounds upon background and architecture for ISAAC, 
as well as, human- SELF interaction and collaboration, Cognitive, Interactive 
Training Environment (CITE).

The ISAAC framework comprises real-time, time-varying creation and destruc-
tion of neural structures within a SELF and takes into account problems that have 
been encountered in the past with earlier, less sophisticated neural systems. The vast 
majority of systems built today are simpletons which learn and store absolutely no 
pedigree which could allow them to operate more efficiently. More specifically to 
learning systems, many earlier neural systems and components based upon the 
principle of time-varying neural structures tended to also forget previously learned 
neural mappings as they were exposed to new types of environments. This is a phe-
nomenon known as “Catastrophic Interference” (CI). Previous attempts to alleviate 
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this problem by utilizing networks and systems with localized processing responses, 
where neural structures were added and modified at the local level, not global, lead 
to systems with unbounded growth. This was primarily due to a lack of effective 
pruning mechanisms due in part to only producing the real-time ‘local view’ of the 
neural structures. To alleviate possibilities of Catastrophic Interference we propose 
a very modular SELF architecture based upon a mixture of hybrid neural structures 
adding elasticity and diversity to SELF capabilities. Hence, the ISAAC architecture 
discussed here comprises a flexible, continuously adaptable hybrid neural process-
ing system with functions for dynamically adding and pruning basic cognitive and 
neural building blocks as real-time needs of the system change.

A foundational component of an ISAAC processing framework is the concept of 
“mixture of experts” architecture and methodology, similar to a human brain. The 
human brain possesses different “specialty” areas used to process different types of 
ingested information (e.g. auditory, visual, and tactile). The difference within 
ISAAC is that here, each expert is defined as a fuzzy, synthetic Cognitron object 
created for each particular algorithm or processing object, and thus is a synthetic 
‘expert’ designed for learning and processing a particular type of information in a 
particular matter. Hence, the information algorithm for which each Fuzzy, Genetic 
Cognitron (FGC) is generated can be predetermined, or evolves by it-SELF.

9.1  Cognitronic Artificial Consciousness Architecture

9.1.1  Synthetic Neocortex Adaptation

Since the SELF is not a biological entity, but is, instead, made up of hardware and 
software, we define a Synthetic Neocortex Theory to facilitate human-like neuro-
biological functions within a SELF cognitive framework. ISAAC’s artificial cogni-
tive controller is an electronic entity where, as described in Chap. 4, where 
information is stored as Binary Information Fragments (BIFs) within elementary 
memory locations, known as synthetic synapses, within the various SELF system 
memories (e.g., short-term, long-term, emotional, etc.). Each synthetic memory 
synapse is a small unit of memory with complex read-write functionality [140]. The 
BIFs are stored in synthetically transmitted neural abductive nodes, whose resolu-
tion ranges from 1 to several dozen bits/synthetic synapse (depending upon the 
precision needed). Analogously, within a synthetic SELF hardware/software driven 
artificial entity, information is, of course, read and written using voltage pulses. 
Read voltages are analogously provided by the arrival of pre-synaptic spikes, initi-
ated by the Artificial Prefrontal Cortex (APC) actuated via a SELF’s Cognitive 
Knowledge framework, driven by FUSE-SEM outputs. The release of synthetic 
neurotransmitters generates a post-synaptic response, which is proportional to the 
number of transmitter channels within a respective memory’s abductive synthetic 
synapse. Summed post-synaptic abductive neural responses can trigger a delayed 
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write pulse, depending upon Cognitron needs and timing information. Pulses are in 
the form of back-propagation pulses, which initiate small synthetic synaptic strength 
relation interrupts (Hebb Rule) [130], and are used to drive the adaptation of syn-
thetic neurons during the SELF learning process. Over time, synthetic, abductive 
neural synapses, improve their predictive abilities, with respect to correlation of 
output-to-input spikes. Figure 9.1 illustrates ISAAC’s short-term memory informa-
tion flow for synthetic synaptic evolution.

Based upon Neural Continuum Theory, discussed in Chap. 2, there exists a fun-
damental limit of information quantity, read and written within SELF memories 
(true with any resource-limited system), As in the brain, ISAAC’s artificial abduc-
tive network is monitored by synthetic Neocortex functions, which monitor the 
abductive network for stochastic neural synaptic leaking and appropriately strength-
ens and/or “de-strengthens” true and erroneous stochastically strengthened syn-
thetic neural synapses. This process allows unsupervised learning and evolving 
within the SELF’s cognitive systems, minimizing the potential for synaptic catastro-
phes. In this way, the synthetic Neocortex acts as a SELF’s memory proofreader; 
independently monitoring and measuring the synthetic synaptic plasticity of the 
synthetic abductive neural synapses. Proofreading helps ensure application of syn-
aptic strengthening to the correct pre and postsynaptic responses, and helps ensure 
application to the correct synthetic abductive neural synapses known as synthetic 
abductive neural plasticity gating.
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9.1.2  Cognitronic Information Flow

For each problem domain a SELF comes in contact with, a series of Dialectic Search 
Arguments continuously build an information content encyclopedia (Knowledge 
Base and Relations) of topics comprising dynamically changing Knowledge 
Relativity Threads used to explore active argument criteria and applied to FUSE- 
SEM searches for topical instances. Domain expert Cognitrons develop arguments 
based upon the exploration of internal encyclopedias and other sources of internal 
information as needed (depending upon Locus of Control parameters). Situational 
Reasoning is a facilitation process within a SELF’s ISAAC framework that actively 
discovers and chains together argument instances for a given DAS. Figure 9.2 illus-
trates this process. The encyclopedia like system pedigree are captured via the use 
of outputs and pointers from topical memory continuously organized via FUSE- 
SEMs to provide context and relativity information for the continuously evolving 
Topics of Interest (TOIs). This cognitive growth process is accelerated with inter- 
Cognitron communication for real-time sharing of information.

Topically and semantically related ISAAC BIFs are arranged as a cluster within 
the FUSE-SEMs where fuzzy classification rules are tuned to best define the subject 
language, fuzziness, relevance, etc. Labeling of the FUSE-SEMs produces metadata 
sued for navigation and querying within a SELF’s internal cognitive framework. 
Pedigree are continually captured and generated by mapping related libraries of 
FUSE-SEMs. Massively parallel recursion is inherently utilized to break down 
dense topics. Figure 9.3 illustrates this process.
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Internal Cognitron Subject Matter Experts (C-SME) explore the stored pedigree 
and utilize FUSE-SEMs to develop prototype hypotheses used to train the FUNN to 
support/rebut the various developing hypotheses. A framework for knowledge and 
context includes the processing of criteria, rules, goals, and requirements which are 
used synonymously in literature to govern the comparisons and processing which 
take place during a given set of activities. Their history is well documented in utility 
theory within disciplines of Economics and Psychology [232]. Specifically, the 
value of the Independence Axiom has been debated for decades [233]. Additionally, 
in engineering there exist numerous methods to attain quality understanding of 
requirements [234, 235]. Hence, in a SELF the proximity of continuously discov-
ered data/information upon comparison to the original criteria and developing pro-
totype is used to determine the Mutual Information Measure (MIM), based on Renyi 
Mutual Information computations. The support/rebuttal BIFs instantiate or refute 
the hypotheses and MIMs are used to calculate Hypothesis Plausibility Measures 
(HPMs). Figure 9.4 describes this process.

In Fig. 9.4, the Topical Maps are utilized by the Dialectic Argument Structure 
(DAS) to group solution prototypes into “like” solutions. Information (fuzzy  
information and metrics, since the solutions are not identical) that is about each 
solution prototype group is extracted and sent back to the DAS to be evaluated. It 
is possible that a set of hypotheses, each one feeding the next, in total explains the 
situation, therefore these hypotheses for a “chain” of hypotheses, which is denoted 
as the recursive “chain” in Fig. 9.4. Possible solution hypotheses are processed 
by the FuNN to see whether these correspond to previously learned solutions, and 
the results are sent to the DAS Cognitron SME. Possible solutions are also sent to a 
Problem Solution Cognitron, shown in Fig. 9.4. Here, the Cognitrons search 
through the SELF memories and Cognitive Ontology to see whether relevant infor-
mation can be found to help support or rebut the current hypotheses under evalua-
tion. Knowledge gathered is shared between Cognitrons at all stages in the 
reasoning process.
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ISAAC’s high-level Cognitive Reasoning Information Flow is illustrated in 
Fig. 9.5, representing the metacognitive processing flow within the SELF.

As explained in Sect. 6.3, the metacognitive processes allow self-analysis and 
self-regulation of the SELF’s overall cognitive process. The metacognitive 
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oversight of the SELF monitors all of the SELF’s high-level cognitive systems 
(memory, reasoning, goals, constraints, communication paths, and Neocortex func-
tions), and provides self-assessment metrics to the SELF’s Artificial Prefrontal 
Cortex (APC). These metrics are utilized by the APC to manage the SELF’s 
cognitive processes and affect current and future cognitive behaviors within the 
SELF’s ISAAC cognitive framework. In general, full cognitive processing with 
ISAAC requires full Cognitron Integration across the SELF ACNF framework. 
Table 9.1 below outlines this integration process.

9.1.3  Artificial Abductive Reasoning

Abduction is formally defined as finding the best explanation for a set of observations, 
or inferring cause from effect. The notion of Occam Abduction [70] relates to finding 
the simplest explanation with respect to inferring cause from effect. A formal defini-
tion for Artificial Occam Abduction would be:

Artificial Occam Abduction: The simplest set of consistent assumptions and 
hypotheses, which, combined with available stored pedigree knowledge, entails 
adequate description/explanation for a given set of observations which has 
reached a previously learned threshold within the thought processes of a SELF.

In formal logic notation, given BD, representing current background knowledge 
of domain D, and a set of observations OD, on the problem domain D, we look for a 
set of Occam Hypotheses, HD, such that:

 – HD is consistent1 w.r.t. BD, and
 – It holds that BD, | = HD,→ OD

1 If HD contains free variables, ∃(HD) should be  w.r.t. BD.

Table 9.1 Self ISAAC cognitron integration

1. Information exchange 2. Communication
– Seeking information from all 

available sources
– Utilizing proper context

– Passing information to appropriate 
ISAs when available

– Providing internal and external reporting

– Providing situational updates – Ensuring communications are relevant and 
understandable (proper translation)

3. Supporting behavior 4. ISA team initiative
– Corrective errors (learning and 

self-evolving)
– Providing guidance or suggestions to other 

ISAs
– Providing and requesting 

assistance from other ISAs when 
needed

– Clearly communicating coalition and 
individual information ISA priorities

 Providing situational updates
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Abduction consists of computing explanations (hypotheses) from observations. 
It is a form of non-monotonic reasoning and provides explanations that are consis-
tent with a current state of knowledge and can become more or less consistent or 
inconsistent, as new information is gathered [160, 229]. The existence of multiple 
hypotheses (or explanations) is a general characteristic of abductive reasoning, and 
the selection of the preferred, or most simple, but possible, explanation is an impor-
tant precept in Artificial Occam Abduction.

Abduction was originally embraced in Artificial Intelligence work as a non- 
monotonic reasoning paradigm to overcome inherent limitations in deductive rea-
soning. It is useful in Artificial Intelligence applications for natural language 
understanding, default reasoning, knowledge assimilation, belief revision, and very 
useful in multi-Cognitron systems. The Abduction form of inference, using hypoth-
eses to explain observed phenomena, is a useful and flexible methodology of rea-
soning on incomplete or uncertain knowledge. Occam Abduction, defined here, 
provides not only an answer, or cause, to the observations, but provides significantly 
more detail, by describing class distinguishing properties of possible hypotheses in 
which the observations become valid, and then explicitly denotes which is the sim-
plest set of hypotheses under which a fact becomes true.

Here is where we diverge from classical Abductive Reasoning, which is gener-
ally steeped in Bayesian probabilistics. Fuzzy abduction, as opposed to Bayesian 
reasoning, utilizes fuzzy sets of hypotheses to embrace the essence of a given set of 
observations. The fuzzy abduction utilized here genetically derives a set of fuzzy 
hypotheses, using the most appropriate available fuzzy implications, and uses these 
fuzzy hypotheses to derive a truth value (how well do the hypotheses explain the 
observations). This process is considered abductive because it actively searches for 
information that both support and/or rebut the developing fuzzy hypotheses. The 
combination of supporting and rebutting arguments is used to determine the “pos-
sibility” that each hypothesis explains all or part of the observations. Hypotheses 
whose possibility is above a given threshold are sent forward either to provide 
explanations, or as input for the next genetically generated set of hypotheses.

9.1.4  Elementary Artificial Occam Abductivity

There are several distinct types of interactions that are possible between two 
elementary Occam Abductive hypotheses h1, h2 ∈ He:

• Associativity: The inclusion of h1 ∈ He suggests the inclusion of h2. Such an inter-
action may arise if there is knowledge of, for instance, mutual information (in a 
Renyi sense) between h1 and h2.

• Additivity: h1 and h2 collaborate additively where their abductive and explanatory 
capabilities overlap. This may happen if h1 and h2 each partially explain some 
datum d ∈ D0 but collectively can explain more, if not all of D0.

• Incompatibility: h1 and h2 are mutually incompatible, in that if one of them is 
included in He then the other should not.
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• Cancellation: h1 and h2 cancel the abductive explanatory capabilities of each 
other in relation to some d ∈ D0.

 – For example, h1 implies an increase in a value, while h2 implies a decrease in 
a value. In this case, one supports the hypothesis while the other is used to 
rebut.

The Occam Abductive Process is:

• Nonlinear in the presence of incompatibility relations
• Non-monotonic in the presence of cancellation relations
• The general case (nonlinear and non-monotonic) Occam Abduction hypothesis 

investigation is NP-complete.2

Consider a special version of the general problem of synthesizing an Artificial 
Occam abductive composite hypothesis that is linear, and, therefore, monotonic.

The synthesis is linear if: ∀ ∈ ( ) ∪ ( ) = { }( )h h H q h q h q h hi j e i j i j, , ,   

The synthesis is monotonic if: ∀ ∈ ( ) ∪ ( ) ⊆ { }( )h h H q h q h q h hi j e i j i j, , ,   

In this special version, we assume that the Occam hypotheses are non- interacting, 
i.e., each offers a mutually compatible explanation where their coverage provides 
mutual information (e.g. Renyi). We also assume that the Occam, abductive belief 
values found by classification abduction subtasks of for all h∈He equal to 1 (i.e., 
true).

Under these conditions, the synthesis subtask of Artificial Occam Abduction can 
be represented by a bipartite graph, consisting of nodes in the set D0∪He. This 
implies that no edges between the nodes in D0, nor edges between nodes in He. The 
edges between the nodes in D0 and those nodes in He can be represented by a matrix 
Q where the rows correspond to d ∈ D0 and the columns correspond to ht ∈ He.

The entries in Q are denoted as Qij and indicate whether the given analyzed data 
are explained by a specific abductive Occam hypothesis. The entries are defined as:

 

Q
d h

i j

i j

, =
0

1

   if datum  is not explained by hypothesis 

   iif datum  is explained by hypothesis       d hi j





  
(9.1)

Given the matrix Q for the bipartite graph, the abductive, Occam synthesis sub-
task can be modeled as a set-covering problem, i.e., finding the minimum number 
of columns that cover all the rows. This ensures that the composite abductive, 
Occam hypothesis will explain all of D0 and therefore be parsimonious.3

Now we look at a special linear and monotonic version of the general abductive, 
Occam hypothesis synthesis subtask and look at two Abductive Neural Networks 

2 Nondeterministic Polynomial time complete. A set or property of computational decision prob-
lems which is a subset of NP (i.e. can be solved by a nondeterministic Turing Machine in polyno-
mial time), with the additional property that it is also NP-hard.
3 Note that the general set-covering problem is NP-complete.
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(ANNs) for solving it. The first is based on an adapted Hopfield model of 
computation:

 
∀ = ≥

=
∑i n Q Vij j
j

m

1 2 1
1

, , , ,…      
 

(9.2)

For the Occam, abductive synthesis subtask, we associate variable Vj with each 
Occam hypothesis ht ∈ He, in order to indicate if the Occam hypothesis is included 
in the composite Occam, abductive hypothesis C. We then minimize the cardinality 
of C by:

 
Vj

j

m

=
∑

1  
(9.3)

subject to the constraint that all data d ∈ D0 are completely explained.
For the Occam, abductive network, the term in the energy function that repre-

sents the problem constraints must evaluate to zero when the constraint is satisfied 
and must evaluate to a large positive value when the constraint is not satisfied, forc-
ing the neural fiber network to evolve accordingly. For this energy term, we use a 
term expressed as a sum of expressions, one for each datum element, di, such that 
the expression evaluates to zero, when hypothesis hj that can explain the datum di is 
in the composite hypothesis, i.e., Vj = 1. Given that Q is an incidence matrix (with 
elements either 0 or 1), the expression:

 
1 1

11

−( ) + −( ){ }
==

∏∑ Q Vij j
j

m

i

n

 
(9.4)

satisfies the following conditions:

• Each sum of the product terms can never evaluate to a negative number.
• The sum of the product terms, thus, can never evaluate to a negative number.
• Each product term evaluates to zero when a hypothesis that can explain the 

datum is in the composite; otherwise, it evaluates to a large value.
• The sum of the product term, thus, evaluates to zero when a composite set of 

hypotheses can explain all the data.

We derive our Occam abductive energy function as follows:

 
E V Q Vj ij j

j

m

i

n

j

m

= + −( ) + −( ){ }
===

∏∑∑a b* * 1 1
111  

(9.5)

Where α and β are positive constants, and β > α. The first term represents the cardi-
nality of the Occam hypothesis and the second term represents the penalty for a lack 
of complete coverage; 0 indicates complete coverage. The self-organizing algo-
rithm for the Occam abductive network is:
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Figure 9.6 below illustrates the ISAAC Occam abductive inference process [40]. 
When sensor inputs are processed, if there are observations that are not readily 
explained, this information is sent to the Occam Abduction processes to search 
through the memories and Conceptual Ontology to look for related and relevant 
information. If none is found, then the Occam processes are engaged to create 
hypotheses and test them to find applicable explanations for the observations. The 
abduction process continues until a set of hypotheses can be generated that ade-
quately explains the observations.
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Fig. 9.6 ISAAC artificial Occam abduction process
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9.1.5  Synthesis of Artificial Occam Abduction

 

Let  be a finite set of  
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The Occam abductive classification subtask takes , 

 

D H D, , 0

       and  as input, where  is a map from , 

 

r r D H℘( ) →℘( )0

       and gives  and  as output.  

The abductive hypoth

H pe

eesis synthesis subtask may be characterized 

       as a fiive-tuple , where  and  

       con

D H q p H D H q pe c e0 0, , , , , , ,( )
sstitute the input to the abduction task, and  

       is

Hc

  the output of the task.  

 

Maximal explanitory coverage of hypothesis data: 

    A compposite hypothesis  is a better explanation of  than

 

H Dc
1 0

    another abductive hypothesis  if:

            

H

q H

c

c

2

1( ) ∩∩ ⊃ ( ) ∩D q H Dc
0 2 0

Ideally, the assembled composite abductive hyypothesis, , 

   would provide adequate explanitary cove

Hc

rrage of

           , i.e., D q H Dc0 0( ) ⊇ .  

 

Maximal belief in abductive Occam hypothesis: 

    A complossite hypothesis  is a better explanation of  than

   

H Dc
1 0

  another abductive hypothesis  if:

          

H

p H p H

c

c

2
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This specifies that among the composite dialectic Occamm 

     hypotheses that explain the data, the one with the

      highest "belief" value is the "best" explanation, by  abduction.  
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This process is fully realized utilizing the hybrid possibilistic abductive neural 
processing network illustrated in Fig. 9.7.

Once it has been determined that sensory observations require an Occam 
Abductive process to provide an explanation for the observations, The Occam 
Abductive Processing Network is invoked. The observations are sent to the hypoth-
eses generated by the Occam Abduction process (see Fig. 9.6). It is possible within 
the Occam Abduction process that multiple hypotheses are required to fully explain 
the observations. These chains of hypotheses (called Metaconcepts) may contain 
individual hypotheses that are shared by multiple Metaconcepts. This is illustrated 
in Fig. 9.7. Once the chained Metaconcepts are adjudicated and a final set of hypoth-
eses are created that adequately explains the observations (sensory inputs), they are 
communicated to Advisor Agents for use by the ISAAC cognitive processes.

9.1.6  Artificial Occam Abductive Hypothesis Evaluation Logic

The following lays out the basics of the Occam Abduction that will be used to per-
form system hypothesis generation, evaluations, and testing for Dialectic Argument 
Structure, and testing:
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Fig. 9.7 ISAAC Occam abductive processing network
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Definition 1

A triplet (Φ, Ω, e) defines a domain of Occam hypothesis assembly:

• Φ = The set of hypotheses
• Ω = The set of observations (sensor inputs)
• e = The Mapping from the subsets of Φ to the subsets of Ω
• Assumptions:

 – Computational: For every subset Φ′ of Φ, e(Φ′) is computable.
 – Independence: e(Φ1 ∪ Φ2) = e(Φ1) ∪ e(Φ2); for all Φ1 and Φ2 that are subsets of Φ.
 – Monotonicity: If Φ1 is a subset of Φ2, then e(Φ1) is a subset of e(Φ2).
 – Accountability: α(φ) is the set of observations that cannot be explained with-

out hypothesis φ.

The following outlines a four-part Occam Dialectic Argument Structure (DAS) 
Process:

Screening: determines hypotheses acceptability allocating them into a hierarchical 
fuzzy classification system.

Collection: aggregates hypotheses while accounting for the observations. 
Hypotheses are determined by adding together every hypothesis that explains all 
or part of the observations.

Parsimony: narrows down the collection of hypotheses to the most applicable 
Occam subset. If a subset of collected hypotheses can explain new observations 
then a narrowed down hypothesis is created.

Critique: determines which hypotheses are the most essential, among those avail-
able, based on fuzzy inference metrics. Individually, every hypothesis is excluded 
from the set, and then the set is tested against the observations. If the observa-
tions cannot be explained without the excluded hypothesis, then the excluded 
hypothesis is marked essential and reintroduced into the set.

Definition 2

An Occam abduction system consists of a logical theory ‘T’ defined over a domain 
language ‘L’, and a set of domain syntax ‘A’ of ‘L’ that are called abducible.4

Definition 3

If a set of syntax φ is found as a result of an abductive process in searching for an 
explanation of ω observations, it must satisfy the following conditions:

4 An abducible argument is a first-order argument consisting of both positive and negative instances 
of abducable predicates. Abducible predicates are those defined by facts only and the inference 
engine required to interpret the meaning. In formal logic, abducible refers to incomplete or not 
completely defined predicates. Problem solving is effected by deriving hypotheses on these abduc-
ible predicates as solutions to the problem to be solved (observations to be explained).
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• T ∪ φ is consistent
• T ∪ φ |− ω
• φ is abducible, i.e., φ ∈ A

Definition 4

(C, E, T) is a simple causal theory defined over a first order language ‘L’ where ‘C’ 
is a set of causes, ‘E’ is a set of effects, and ‘T’ is a logical theory defined over ‘L’.

Definition 5

An Occam Explanation of a set of observations Ω, which is a subset of E, is the 
simplest finite set Φ such that:

• Φ is consistent with T
• T ∪ Φ |− Ω, where Ω is the conjunction of all ω ∈ Ω.
• Φ is a subset-minimal.

9.1.7  SELF’s Overall Cognitive Cycle

When we put together all the pieces for a SELF’s ISAAC Artificial Cognitive 
Architecture, which includes the ACNF, the PENLPE cognitive management frame-
work, the SELF memory systems, and the DAS/Cognitron systems, we derive the 
high-level SELF cognitive and memory cycles (see Fig. 9.8). The high-level cogni-
tive process shown in Fig. 9.8 illustrates the process and information flows steps 
involved in the SELF’s “conscious” cognitive processing:

• Step 1. Sensory Processing – these processes are responsible for understanding 
either inputs received from the SELF’s sensors, or internal information that 
needs to be evaluated in by sensory processing algorithms. Sensory Processing 
spawns Reasoner Cognitrons that carry perceptual information related to the 
Perceptual Association Network.

• Step 2. Perceptual Association Network – Reasoner Cognitrons process the 
sensory information that includes metrics to evaluate the external environment’s 
reaction to the current SELF’s outward behaviors. Information is exchanged with 
the SELF’s Action Selection Network to provides re-affirmation of the current 
SELF’s external behaviors. Based on the output of the perceptual processing, 
Analyst Cognitrons are created and sent to the Behavior Selection process to 
determine what internal and external behaviors are warranted.

• Step 3. Behavior Selection – Analyst Cognitrons utilize the metrics created by 
the Perceptual Association Network to determine whether this information con-
stitutes queues within the Episodic, Declarative, and Emotional memories of 
behaviors that must be initiated, based on these queues. Based on the memory 
queues generated within the SELF’s various memory systems, combined with 
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information from the current Attention Cognitrons, coalitions of Cognitrons are 
created that provide information for the Cognitive Management processes 
(PENLPE) that monitor, manage, and initiate cognitive processes within the 
ISAAC framework.

• Step 4. Cognitive Management – here, information from the Conscious 
Cognitron coalitions is correlated and any information that must be “remem-
bered” is routed to the appropriate memory system (e.g., emotional, episodic, 
etc.). Based on the current and predicted future cognitive states, the cognitive 
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Fig. 9.8 SELF high-level cognitive and memory cycle
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management processes broadcast the current state of consciousness to the 
Artificial Prefrontal Cortex for resource management, and any information would 
constitute a procedural memory is sent to the procedural memory creation 
processes.

• Step 5. Artificial Prefrontal Cortex – based on the conscious broadcasts from 
PENLPE, along with any outside information that is required (refer to Locus of 
Control in Chap. 6), the Artificial Prefrontal Cortex initiates possible internal and 
external behaviors that are required to regulate the SELF, meeting all internal 
goals and constraints, while at the same time fulfilling external goals and mission 
directives. These action selections/requests are sent to the Action Selection 
Network.

• Step 6. Action Selection Network – requested/selected actions are evaluated for 
appropriateness and internal and external actions are selected. If there are any 
Procedural Memories available for the actions selected, they are initiated. The 
Perceptual Association Network is informed of the selected internal and external 
actions and the SELF’s effectors are initiated through the SELF’s HSI.

9.1.8  SELF Sensory Environment

In order for the SELF to be human-like in its processing, collaboration, and overall 
nature, we must provide sensors to bring in information from the outside environ-
ment [137]. Much like humans, the SELF’s ISAAC architecture utilizes all of the 
sensory information available. Since we are not bound by human limitations in sen-
sory information, ISAAC can contain sensors and sensory processing of informa-
tion outside the normal human restrictions (e.g., RF information). Figure 9.9 below 
illustrates the ISAAC sensory environment available to the SELF for processing. 
Given the sensory inputs and processing, along with the SELF’s goals, directives, 
mission needs, and internal requirements (power conservation, self-assessment, 
etc.), all of these are processed and utilized to determine courses of action required 
by the SELF, which in turn drives the use of the SELF effectors, whether they be 
artificial arms and legs, or wheels, weapons, etc. Figure 9.10 describes the ISAAC 
sensor-to-effector processing flow. There is communications (feedback) between all 
levels of cognitive processing within the ISAAC framework, and this is certainly 
true between the Sensor and Effector networks, as illustrated in Fig. 9.10.

First level of sensory perception looks for spatial and temporal detail within the 
sensory observations. The sensory perception algorithms query the spatial/temporal 
behavior processes to determine if there are specific temporal or spatial characteris-
tics the actions were meant to create or capture. Perceptual information is flowed to 
the relational and reactional perception algorithms to assess and create Knowledge 
Assimilation Threads based on the results of the Topical Map associations and que-
ries to the SELF’s Conceptual Ontology and system memories. At this stage of 
processing, the relational and reactional perception algorithms may request infor-
mation from the processes that determine the behavioral priorities to determine 
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whether the relational and reactional information received through the sensors 
consistent with the anticipated relational and reactional responses.

One of the last stages within the sensory perception processing is to determine 
whether the observations perceived through the sensory processing contributed to, 
or detracted from, the SELF’s overall internal and external goals, constraints, and 
mission directives. The perceived goal, constraint, and mission directive disposition 
is stored and the results are used to help determine future internal and external 
actions. The observations of the relationship between actions and their effects on 
goals, constraints, and mission directives are transmitted to the memory processing 
systems. Here memory queues are created for future use.

9.1.9  ISAAC’s Lower Brain Function Executives

As with any cognitive entity, whether it is a human, a dolphin, a white rat, or an 
artificial life form, there is lower brain functions executives required to, in the 
background, keep the entity functioning. In biological entities these lower brain 
function executives keep blood flowing throughout the body (keep the heart pump-
ing), keep the flow of oxygen throughout the body (keep the entity breathing), etc. 
Within the SELF, the ISAAC cognitive architecture provides Lower Brain Function 
Executives, based on human lower brain function executive levels (e.g., brainstem, 
thalamus, etc.).

Within the SELF they have different meanings, but they are analogous to human 
lower brain function executives. An example would be blood flow. There is no blood 
flowing throughout the SELF, but the equivalent is information flow. Without infor-
mation flowing throughout the SELF, the SELF is essentially dead. Resource man-
agement is another important lower brain function executive within ISAAC. We 
discussed the mechanisms for Cognitive Economy in Sect. 6.6. Within the ISAAC 
lower brain function executives are components that utilize the PENLPE cognitive 
management functions to facilitate self-assessment, sensory management, etc. 
within the SELF’s ACNF cognitive systems. We will describe each of these sec-
tions, based on their human counterparts. Within biological entities, these systems 
combine to form an overall control system for the underlying functions necessary to 
keep the entity alive and functioning. This is also true with ISAAC.

Figure 9.11 shows ISAAC as a high-level control system, with Fig. 9.12 illustrat-
ing the lower-level informational control system. The Conceptual and Instantiated 
Ontologies within the SELF’s ISAAC cognitive system contain those real-world 
concepts the system understands and has experienced. When a decision is made 
and/or sensory information is received, all of the outputs from the various cognitive 
processes within the SELF combine to form an inference, or prediction, of what 
the sensory information means, or what effect the current action(s) will have on the 
real-world environment the SELF is within. The SELF’s cognitive processes fall 
generally into three categories:
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• Intelligence: the SELF’s memories, problem solving, and decision making capabilities,
• Wisdom: the SELF’s inference engines, learning mechanisms (e.g., Occam 

Learning), situational assessment (evaluation), information integration, and 
information/strategic management capabilities,

• Creativity: the SELF’s abductive reasoning and temporary association capabili-
ties, along with the SELF’s ability to detect novelty or unknown information/
situations (pattern discovery).

These inferences and predictions are weighed or evaluated against the real-world 
responses and/or sensory information to determine the effectiveness of the SELF’s 
decisions and the effects of the SELF’s actions/behaviors. Based on the evaluation, 
the errors (predicted-actual), the SELF’s behavior generation processes must choose 
appropriate responses/actions required. The result is a high-level control system, as 
is depicted in Fig. 9.11.

At the Information System level with the SELF, the integrated system health 
management processes (artificial Hypothalamus) collect Measures of Effectiveness 
(MOEs) on the processing infrastructure of the SELF and perform self-assessment 
of the overall SELF health and SELF status. Based on these MOE’s, resource man-
agement processes (Cognitive Economy discussed earlier) will be activated to opti-
mize the SELF effectiveness.

These MOEs include measuring the quantity, velocity, and acceleration of infor-
mation flow throughout the SELF’s systems, at each level within the SELF process-
ing infrastructure. These levels include:

• Peripherals (HSI) and interfaces,
• Enterprise Infrastructure (processors, memories, networks) quantity and quality 

measures (sometimes called Quality of Service or QoS measures),
• Enterprise Infrastructure informational velocity and acceleration measures. This 

measures how quickly information can be transferred between processing sys-
tems within the self (velocity), and how quickly information needs can be ramped 
up when information needs are critical (acceleration).

These drive the Integrated System Health and Prognostic Health Cognitrons to 
process and communicate issues and needs to the various system management pro-
cesses within the SELF’s PENLPE cognitive management. Figure 9.12 illustrates 
this process.

This SELF as a control system may also be viewed as an analogy to a human 
Central Nervous System (CNS), which is itself a control system within the human 
cognitive processing system [14].

9.1.10  ISAAC as an Artificial Central Nervous System

Throughout the book, we have described the various aspects of the SELF and the 
ISAAC cognitive framework in terms of human brain functions (e.g., Artificial 
Prefrontal Cortex, Artificial Neocortex, etc.). Since many people are familiar with 
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the basic human central nervous system, it seemed appropriate to describe ISAAC 
in these terms. Figure 9.13 is an adaptation of work done by Kandel [236] and 
Levine [163], and provides a high-level view of the human Peripheral Nervous 
System (PNS) in terms of how information is transmitted between its various com-
ponents. The PNS consists of those components outside of the Brain and Spinal 
Cord. One of the major components of the PNS, the Effectors, consists of the nerves 
associated with motor nerve fibers. This is divided between the Somatic Nervous 
System, the voluntary effector function, and the Autonomic Nervous System, which 
affect the internal organs, blood vessels, and glands and corresponds to involuntary 
nerve fibers (things regulated by the brain without conscious thought). Information 
is sent from the Brain to the Spinal Cord, and then out to the PNS systems.

The Autonomic Nervous System has two major divisions, the Parasympathetic 
Division, which is used as a resource manager (conserves energy) and promotes house-
keeping functions within the human cognitive system, and the Sympathetic Division, 
which regulates and mobilizes the body’s effector motor nerve fibers and cognitive 
systems during activities (e.g., fight or flight). The Autonomic Nervous System is also 
tied to the Sensory Division of the PNS and may drive or trigger the body and brain’s 
responses, depending on the current Autonomic Nervous System state.

We use an adaptation of Fig. 9.13 to illustrate the cognitive and information flow 
structures within the SELF as a Synthetic Nervous System (SNS), illustrated in 
Fig. 9.14. Here ISAAC and PENLPE act as the Brain and Central Nervous System 
functions within the SELF Synthetic Nervous System. As illustrated in Fig. 9.8, 
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Fig. 9.13 Human central nervous system high-level view
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effector instructions are transmitted via Cognitrons through the behavior selection 
processes to the SELF’s effectors, both for voluntary (conscious) execution and 
involuntary (subconscious) execution. In the case of the SELF, instead of blood 
vessels, internal organs, and glands, the SELF’s system are the IT Infrastructure 
(processors, memory, networks, etc.). This also drives the external Locus of Control 
(Chap. 6) functions. The Synthetic Autonomic Nervous System processes within 
the SELF provide internal Locus of Control autonomic functions (subconscious) 
that regulate the internal systems of the SELF.

The SELF’s Synthetic Autonomic Nervous System, like the human Autonomic 
Nervous System, is divided between the Parasympathetic Division, which, in the 
SELF, provides the Cognitive Economy functions (Chap. 6) and the Synthetic 
Neocortex functions, and the Sympathetic Division, which drives the Artificial 
Prefrontal Cortex and Emotional Memory (defensive) functions of the SELF. These 
systems all work together to allow complete autonomous control and operation of 
the SELF.

Based on this picture of the SELF’s cognitive structure in terms of Human Brain 
functionality, we will describe each of ISAAC’s subsystems as brain functions:

• Lower Brain Function Executives (the Brainstem): accepts sensory Inputs 
and performs early pre-processing of sensory information to be sent to Synthetic 
Thalamus. ISAAC’s lower brain functions controls the startup of the ISAAC 
framework (cognitive awakening) and creates and controls Interface Cognitrons 

SELF Synthetic Nervous System (SNS)
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Integrative and Control Centers (Function)
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Fig. 9.14 ISAAC synthetic nervous system high-level view
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for Sensors. In addition, these process create and control Data Steward Cognitrons 
for initial sensory information handling and regulates the internal information 
flow (heartbeat) within the IT infrastructure, including creating Health and Status 
Cognitrons to monitor the overall system as well as regulate sensory information 
flow (external inputs – breathing).

• Information Processing Center (the Thalamus): here, processes create and 
control Data Steward Cognitrons to accept information from Brain Stem Data 
Steward Agents, where sensory processing algorithms cleanses, categorizes and 
creates metadata and contextual threads (RNA) [39]. This defines the initial state 
of the SELF, creating and disseminating the required Cognitrons, based on inter-
nal state assessment. The Thalamus creates and controls Advisor Cognitrons, 
which advises on the system health status which is used to regulate the SELF’s 
lower brain functioning (internal and external information flows). These pro-
cesses also create and control the Internal Interface Cognitrons which allows 
interfaces between Subconscious and Lower Brain functions to Higher Brain 
Functions. Finally, the Thalamus processes act as an information relay between 
sensory memory and Cognitrons.

• External Motor/Effector and HRI Control (the Cerebellum): the synthetic 
Cerebellum functions within ISAAC create and control the interface Cognitrons 
for interface with the outside world (HSI functions). This includes the creation 
and control of Advisor Cognitrons to deliver external motor/actuator control 
decisions. Given the external interface nature of the Cerebellum, these processes 
also create and control Health and Status Cognitrons that monitor external inter-
faces (HSI, motor/actuator).

• External Motor/Effector and HRI Control (Limbic System): these processes 
within ISAAC create and control Reasoner, Analyst, and Advisor Cognitrons 
with specialized strategies for dealing with possiblistics of emotional memories 
and emotional triggers. They also provide inputs to the Artificial Prefrontal 
Cortex that determines transition between Artificial Autonomic Nervous System 
States. This emotional information is transmitted throughout the SELF via EML 
(Emotional Markup Language), which includes Emotional RNA threads that 
provide emotional triggers in order to initiate emotional memory recall.

• Integrated System Health Management (the Hypothalamus): the synthetic 
Hypothalamus processes create and control Reasoner, Analyst, and Advisor 
Cognitrons with specialized nodes and strategies specific to Integrated and 
Prognostic System Health Management [51, 53]. These Cognitrons monitor and 
control relationships between emotional, conscious, and subconscious systems 
within ISAAC. The Hypothalamus algorithms are used to initiate and control 
Cognitrons used for self-assessment, self-regulation, self-soothing, and self- 
healing within the ISAAC cognitive ecosystem. As part of this self-regulation, 
the algorithms initiate artificial pain and pleasure metrics within ISAAC that 
correspond to prioritization of tasks, goals, initiatives, etc. within the cognitive 
processing system.

• Abductive Conceptual Framework (the Temporal Lobe): here, the sensory 
processing algorithms transform sensor data into the different types of “perceived” 
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Binary Information Objects, based on the nature and type of sensory information. 
These processes keep track of events (temporal information), information context 
(relationships between object and events), including spatio- temporal relation-
ships [56], and create metadata that is used by the memory system for infor-
mation correlation and retrieval (construction). The abductive processes are 
utilized to reason (hypothesize) about the perceived objects, events, and context, 
based on information about current mission, goals and objectives, the current 
state of the system, as well as historical information contained in the SELF’s 
Conceptual Ontology and system memories. This is the section of the ISAAC 
cognitive system where priorities are decided and a hierarchy of priorities is cre-
ated for the system to operate from. Based on these priorities, a “course-of- 
action” hierarchy is created, based on the overall system priorities, goals, and 
mission directives.

9.2  The Cognitive, Interactive Training Environment (CITE)

Depending on autonomous systems like the SELF is a two-edged sword. These are 
extremely complex systems that require complex control and monitoring and it’s 
unclear as to what level of trust to ascribe to autonomous artificial entities. However, 
utilizing software to partially or fully automate tasks is now commonplace. 
Unfortunately with most systems that utilize automation the capabilities of the soft-
ware performing these tasks typically do not improve over time (as humans would 
who were performing the same tasks). Even though the SELF is a fully cognitive, 
learning, self-evolving system, one of the questions to be solved is how we can 
infuse human heuristic thinking into the SELF cognitive processing algorithms. 
One way to accomplish this is to utilize human operators as mentors for the SELF. 
Here we describe the use of a software system called the Cognitive, Interactive 
Training Environment (CITE) that learns and improves through the use of a Human 
Operator acting as a Mentor for the software, until the software is capable of per-
forming the desired operations autonomously and with improvements (see 
Fig. 9.15). CITE provides for Human Interaction Learning (HIL); as the human 
operator’s role changes from manager to mentor to monitor while the SELF evolves 
from learner to performer. The CITE system, illustrated in Fig. 9.15 provides effec-
tive feedback mechanisms to allow humans to influence the SELF systems. The 
heart of CITE is the SELF’s PENLPE cognitive monitoring and management frame-
work described earlier. Utilizing PENLPE’s monitoring and metric generating capa-
bilities for collaborating with humans, humans can influence PENLPE in a positive 
way and CITE allows the Cognitrons to learn and improve as the process. The 
human has to ability to review the SELF’s choices, based on PENLPE’s suggestions 
and then provide feedback as to why a given choice or set of choices was effective 
or not. The PENLPE management framework then provides feedback to the human 
to give the human an understanding of the processes the SELF utilized to make 
inferences and decisions. This process of feedback and human-SELF interactions 
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and collaborations provides humans insight to develop trust in the SELF over time 
and will help to increase the effectiveness and efficiency of the SELF, as well as 
providing an effective Human-Robot interface that humans will come to trust and 
use over time. Figure 9.15 illustrates the high-level architecture for CITE.

9.2.1  SELF Cognitive Resiliency

One of the adapted uses for CITE is to provide a mechanism to develop cognitive 
resiliency within the SELF. Developing “Warrior Resiliency” has been a focus of 
armies since the dawn of time [85]. There has been much research over the last 
decades to understand and provide systems and methodologies to develop and 
enhance cognitive resiliency in soldiers. The ability to adapt to adversity and over-
come barriers in all walks of life is critical to a soldier’s overall mental health and 
strength. The same must be true for an autonomous SELF. The SELF must have the 
ability to adapt to any environment it finds itself in. An adaptation of the SELF can 
allow human operators to utilize the SELF to develop cognitive resiliency within the 
SELF’s ISAAC cognitive architecture. Figure 9.16 illustrates the use of CITE for 
this purpose.
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Fig. 9.15 The SELF CITE high-level architecture
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As described above, the CITE system utilizes the PENLPE cognitive management 
system. This, combined with Ontological Technologies developed by Purdue 
University [203], allows CITE to provide an interactive environment capable of 
providing training and adaptation for the SELF. In this mode, CITE will provide the 
SELF with automated, interactive cognitive training and captures and reports artifi-
cial metacognitive indicators and metrics that allow complete assessment of the 
cognitive resiliency of the SELF. CITE will gather and assess metacognitive indica-
tors like:

• Problem solving skills (analytical proficiency)
• HRI Collaborative skills
• Cognitive self-awareness
• Cognitive self-regulation
• Emotional self-regulation (the SELF’s Limbic system)

CITE will provide the SELF with training to allow evolution of the SELF’s self- 
monitoring and self-assessment skills needed for cognitive self-regulation when the 
SELF is operating autonomously. The self-assessment and cognitive resiliency 
instructional methods are based on Dr. Peter Levine’s [163] autonomic nervous 
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Fig. 9.16 The CITE used for SELF cognitive resilience
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states, which provide the basis for cognitive behavior training [134], metrics and 
artificial bio-markers that include environmental, contextual and HRI component to 
affect real SELF cognitive resiliency [83–85].

9.2.2  SELF Cognitive Resiliency and Memory Development

It may sound strange to be discussing cognitive resiliency in an artificial life form 
like the SELF, however if artificial entities like the SELF are expected in the future 
to operate in complete autonomy, ensuring that the autonomous artificial cognitive 
system can respond and adapt to unknown situations and environments becomes 
critical. Cognitive resilience develops within the cognitive framework (whether bio-
logical or artificial) through training that results in the learned ability to respond, or 
self-regulate, to severe changes in environments or situations. These learned abili-
ties, then, get stored as memories (possibly emotional memories) within the mem-
ory system. Memories, in general, are divided according to the functions they serve 
[178]. To qualify as a memory, a cognitive input must cause both enduring changes 
within the cognitive system (affect autonomic nervous system states) and must also 
affect emotional responses and goals [159]. Crowder and Friess adapted Dr. Levine’s 
autonomic nervous system states to how they were applied to artificial entities [78]. 
A memory must also induce some change that affects the entities Conceptual 
Ontology, brought about by the memory in class of things being affected by the 
input, and therefore, affects entity behavior (we discussed the SELF’s behavior 
selection previously). There are no memories that are neutral from a behavioral 
standpoint [79].

9.2.3  SELF Procedural Memory Development and Resiliency

One of the main divisions of memory that we discussed in previous chapters is 
Procedural Memory. Procedural Memory is a form of implicit memory that includes 
classical conditioning and the acquisition of skills [90]. Procedural Memory cre-
ation contains central pattern generators that form as a result of teaching or practic-
ing and are formed independently of conscious or declarative memory. In his work 
on Procedural Memory, Kahana showed that retrieval of Procedural Memory is a 
cue-dependent process that contains both semantic and temporal components [144].

Creation of Procedural Memory is tied to not only the repetition of tasks, but also 
to the richness of the semantic association structure they represent [220]. In order to 
provide cognitive resilience to the SELF, the CITE system provides interactive 
training that allows the DART systems for the SELF to create procedural memories, 
as was described previously. These memories, or ‘scripts’ will have physical (sen-
sory) as well as emotional memory triggers and provide the cognitive skills required 
at the necessary time for self-evaluation, self-awareness, and self-assessment within 
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the SELF’s ISAAC cognitive framework to present or reduce problems caused by 
changes in the SELFs environment or situation [80, 90].

The SELF’s CITE training will provide an artificial cognitive architecture that is 
capable of developing cognitive strategies and training scenarios, based on mission 
needs and goals, that allow the SELF to develop implicit strategies (procedural 
memories) that will “kick-in” under specific circumstances, based on physical, sen-
sory, and/or external or internal environmental changes the SELF finds. Based on 
these cognitive interactions between CITE and the SELF’s ISAAC cognitive frame-
work, procedural memories creation will be initiated to allow the self-assessment, 
self-awareness, and self-regulation, driving self-soothing within the artificial cogni-
tive architecture [79].

9.3  Discussion

Humans are made up of thousands of biological processes that create our overall 
conscious self. However, the SELF is, at its heart, software. We have seen through-
out the book architectures, methodologies, processes, and frameworks aimed at pro-
viding the SELF with synthetic consciousness, reasoning, learning, inferring, and 
remembering. All of these must be implemented in software and hardware. Chapters 
10 and 11 describe software and hardware (physical) architectures capable of sup-
porting the SELF’s cognitive processes.

9.3 Discussion
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As discussed in previous chapters, the primary SELF software component is the 
Cognitron. Each Cognitron type provides different cognitive abilities that, together, 
form a cognitive ecosystem within an ACNF cognitive framework, implementing 
intra & inter SELF communication and collaboration. The basic Cognitron is a self- 
contained discrete functional software codelet comprising one or more loosely cou-
pled software services. For a Cognitron to be of a specific archetype (e.g. Reasoner 
Cognitron), a set of archetype specific services is defined. Additional services can 
always be added to extend capabilities of a Cognitron archetype. Figure 10.1 lists 
the core set of services from which a Cognitron’s capabilities can be defined [198].

As described in previous chapters, there are five basic Cognitron Archetypes that 
make up the SELF Cognitron software architecture:

• Data Steward Agent
• Advisor Agent
• Reasoner Agent
• Analyst Agent
• Interface Agent

As described in previous chapters, the five basic Cognitron Archetypes within an 
Artificial, Cognition based Software Architecture are:

• Data Steward Archetype (DSA)
• Advisor Archetype(ADA)
• Reasoner Archetype (REA)
• Analyst Archetype (ANA)
• Interface Archetype (INA)

These reference architecture archetypes are manifested and implemented as soft-
ware agents who then drive artificial SELF cognitive processing.

A SELF Software Architecture is a distributed architecture that allows Cognitrons 
to operate independently, but in coordination and collaboration with other Cognitrons 
to achieve SELF-wide goals and comply with directives. In order to facilitate and 
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manage Cognitron coordination and collaboration, a hierarchical management 
structure is provided via PENLPE for continually negotiating Cognitron goals [198]. 
Any Cognitron may take the role of Mediator (managed by the Artificial Prefrontal 
Cortex). A Mediator Cognitron (MC) is one of the first Cognitrons to be started on 
a host processor. MC has special duties related to short-term and long- term memory 
within its host and performs special duties related to other Cognitrons that will, over 
time, run on that host processor (see Sect. 4.2). One issue currently being researched 
is the sequencing of the cognitive functions for a SELF artificial life form. 
Figure 10.2 provides a Use Case diagram for the Mediation Cognitron. The MC is 
utilized to initialize a SELF’s subconscious Cognitrons, Lower Brain Function 
Executives, and Memory Management Executives (Sect. 4.2).

Figures 10.3, 10.4, 10.5, 10.6, and 10.7 breaks down Fig. 10.2 to provide Use 
Cases for the executives (Prefrontal Cortex, Lower Brain Function, and Memory 
Management). Figure 10.3 illustrates the Lower Brain Function Executives that are 
initialized through the Mediator Cognitron. These executive functions are pulled 
from a SELF Long-Term Memory and executed in order to “start” a SELF. These 
are described in Sects. 9.1.9 and 9.1.10. Figure 10.3 shows the Lower Brain Function 
Executives that must be initialized and executed in order to first by the MC.

Figure 10.4 illustrates the executive functions that must be initialized and exe-
cuted in order for the Artificial Prefrontal Cortex functionality within a SELF. These 
include the Metacognitive, Metamemory, Cognitive Economy, Locust of Control 
and Communications functionalities discussed in earlier chapters.

Figure 10.5 provides the Memory Management Executives that the Mediator 
Cognitron must initialize and execute in order for a SELF’s memory systems to 
functions properly upon startup.

Figures 10.6 and 10.7 provide lower-level details of the Brain Steam and 
Thalamus executives to illustrate the type of lowest level functions that must be 
executed in order to initialize and start up a SELF. Each of the executive function in 
Figs. 10.3, 10.4, and 10.5 would have similar diagrams.

Agent

Service

Service

Service

Service

Mediator Service: MDS
Data Acquisition Service: DQS
Data Flow Service: DFS
Signal Processing Service: SPS
Alarms/Alerts Service: AAS
Health Assessment Service: HAS
Inference Engine Service IES
Prognostics Service: PRS
Decision Reasoning Service: DRS
Histories Service: HIS
Configuration Service: COS
Human Systems Interface Service: HSS
Proxy Service: PXS

Fig. 10.1 Basic set of 
available Cognitron services
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10.1  Artificial Prefrontal Cortex Genesis

When a SELF is first initiated, any Cognitron acting as a Mediator may also take on 
the role of System Mediator (Artificial Prefrontal Cortex). This role is negotiated 
between host mediator Cognitrons within the cognitive framework network and will 
typically be assigned to the host mediator Cognitron with the most appropriate local 
resources available, such as storage, memory, processor capabilities (CPU). When 
the spark of life is given to a SELF, default properties and initial settings will govern 
startup. However, it should be noted that a SELF of different sizes and limitations 
can and most likely will require different initial settings based upon a priori knowl-
edge of the operational environment a given SELF will operate in. The System 
Mediator maintains its role for the life span of a SELF.

The initial implementation vision for a SELF is an artificial self-contained, 
autonomous hardware/software entity. Therefore, the initial software architecture 
assumes that once a System Mediator has been established in does not migrate to a 
different processor, unless a partial SELF system failure is experienced, and would 
be considered a recoverable system failure. Think about shutting down and trying to 
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Fig. 10.4 Artificial prefrontal cortex executives
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move a human’s Prefrontal Cortex to another part of the brain; a non-recoverable 
system error, by the way. Such a move within a SELF would require a system-wide 
change in order to physically transfer a SELF’s long-term memories (e.g., declara-
tive, procedural, etc.) a process that would take considerable time and the system 
would be cognitively unavailable during this time.

Another primary function of Mediator Cognitrons is continuously assembling 
information from the many Cognitrons for facilitating creation of organized 
Cognitron coalitions for solving problems, analyzing, and inferring about sensory 
data/information. This process is designed to provide cognitive intelligence, rapid 
analysis, and reasoning within an artificial cognitive architecture. This mediation 
process facilitates the memory integration process, providing development and 
delivery of knowledge and knowledge characteristics throughout a SELF’s cogni-
tive processing architecture. Thus, providing for increased learning and reasoning 
capabilities as Cognitrons evolve and communicate their insights. The Mediation 
Cognitrons rely on an initial Reasoner Cognitron (RC) launched by each host within 
a SELF hardware framework [198]. The Host Mediator (HoMe) (aka. Artificial 
Prefrontal Cortex) is responsible for managing the goal-orientation for a SELF 
making sure learning is generally focused upon objectives, directives, and health.
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10.2  Cognitron Service Instantiation

Cognitrons within a SELF cognitive framework are not mobile, however, personalities 
aggregating over time and the components within them are mobile. Cognitron per-
sonalities are discussed in the next chapter. The preceding chapter introduced artifi-
cial cognitronic archetypes. Specifically, Fig. 10.1 described core basic services that 
are available to the different archetype Cognitrons. Each Cognitron service is com-
posed of small discrete function specific pluggable modules, or Nodes. Remember, 
in order for a Cognitron to be considered one of the archetypes, it must contain a 
minimum set of available services. Hence, Fig. 10.8 shows the minimum services 
required for each Cognitron archetype. Each Cognitronic Agent may contain more 
capabilities than the services shown in Fig. 10.8; however, it must contain at least 
these services to perform the artificial cognitive functions of a particular Cognitron 
archetype It is possible that new Cognitron archetypes have to be created and 
evolved over time as a SELF’s ISAAC cognitive processing system determines that 
a new archetype is needed, possibly to handle something new it was not originally 
programmed for; based upon its available sensors and other physical/data environ-
ments that a SELF encounters.
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As explained, each service consists of one or more pluggable Nodes that define 
the service capabilities within the Cognitrons. These pluggable Nodes provide a 
modularized service architecture that allows the SELF cognitive framework to cre-
ate new Cognitrons and new services with new purposes. The collection of Nodes 
within each service defines its overall functionality. As with Cognitron archetypes, 
each service has a minimum number of nodes required for it to be considered a 
particular service type. Figure 10.9 shows the basic Nodes available to each service; 
with each Node providing functions or capabilities specific to that Service.
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Nodes, as explained, provide service capabilities. A family of nodes constitutes 
a service plugin. Figure 10.10 illustrates the minimum nodes required for a 
Cognitron service to be called a particular service type. A service may contain more 
than the minimum nodes, but must contain at least the nodes shown in Fig. 10.10

10.3  Cognitron Personalities

The high-level features of the Cognitron architecture are enhanced by the evolution-
ary processes embedded within a SELF ISAAC cognitive framework and imple-
mented utilizing functionally distributed capabilities provided by the PENLPE 
infrastructure [78, 80]. This enables Cognitrons to learn and evolve over time. 
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However, evolution of simple stored information and the continuity of operations 
most systems employ today are not sufficient for a self-evolving system. When 
humans are exposed via injury or disease to brain damage many undesired outcomes 
follow. A system failure for a SELF would similarly result in the loss of learned and 
evolved behavior across a current set of evolutionary Cognitrons. To eliminate this 
potential problem, Cognitrons store personality tokens, which capture the current 
machine arousal states (Sect. 3.4) of a Cognitron to envelop the essence of stored 
memories. A personality then is a collection of state information carried in a “per-
sonality token” that describes the knowledge and context using knowledge relativity 
threads [229] and representing that given body of information for an operational 
Cognitron [198] and the rest of the operating SELF. Figure 10.11 illustrates the 
personality token concept. Cognitron personality tokens are stored within a SELF’s 
memories, thus allowing Cognitron personalities to be cloned and distributed. Once 
a “clone” Cognitron has been created, the two Cognitrons could learn and evolve 
differently; however, this allows a SELF to create new Cognitrons that also carry the 
memories of previous Cognitronic operations. Hence, allowing for system regen-
eration in case of system failure without loss of evolutionary learning within an 
artificially generated cognitive architecture [99].

In this way, Cognitronic personalities become mobile and “state mobility” 
enables Cognitrons to evolve self-deterministically [81, 198]. Self-determinism in 
humans is generally still governed by varying degrees by culture, laws, and general 
policies. Similarly, policy management for distribution of Cognitron updates and 
state token mobility within a SELF processing infrastructure is handled via Interface 
Cognitrons. The personality of particular Cognitrons is partially based on their need 
to cooperate, learn, and function autonomously within a SELF, as well as, deter-
mined by immediate and codified objectives, directives, and system health.
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10.4  Cognitron Flexibility

As explained, all services are flexible, pluggable modules that enable Cognitrons to 
add and/or replace as required, based on the current needs, goals, directives, etc. 
The addition of services beyond the minimum required set is based solely on SELF 
needs. A simple example might be for a Cognitronic History service to keep track 
of new changes within an interface Cognitron, even though this History service was 
originally not required. As explained, a plug-in hierarchy exists, with core Cognitron 
code as the parent, services are children, and nodes are child function primitives to 
services. Both the Cognitron code and the service code implement plug-in manage-
ment features within their core components, managed by the overall PENLPE cog-
nitive management framework. However, the core software enabled elements that 
allow for SELF Cognitronic flexibility are the underlying, simple KRT representa-
tions of normalized unstructured information content which pervade the SELF arti-
ficial Cognitronic architecture and the flow of scalable, parallel recursion. 
Additional, flexibility and speed is enhanced via shared memory access, and storage 
and via minimization of instruction and software stack.

Serially, examining Cognitronic flow, a core Cognitron Archetype would pull 
services and node plug-ins from Mediator Cognitron archives on a per need basis. 
Next, local Mediator Cognitrons would keep a local copy of available plug-ins, 
while the Host Mediator Cognitron keeps global copies that are pulled by the local 
Mediator Cognitrons. The Host Mediator Cognitron and Local Mediator Cognitrons 
keep metadata about plug-ins so that the Mediator Cognitrons can determine when 
to upgrade their local plug-in repository. The Host Mediator can then be updated via 
Cognitrons, based upon evolution within the cognitive infrastructure, or additional 
information from external sources. The Host Mediator may send out alerts to Local 
Mediators that updates are available, allowing the Local Mediators to schedule 
updates within their local cognitive structures.

Services within a single Cognitron communicate via interface nodes plugged 
into the local Cognitron’s management system. Figure 10.12 illustrates this. Services 
communicate with other services outside of a given Cognitron using a Cognitron 
availability and context registry, by querying Cognitrons for discovering adjacency, 
finding the appropriate Cognitron types, and for generating external messages 
routed to remote Cognitrons through the Cognitron’s local Data Flow service.

10.4.1  Mediator Service

Earlier we discussed that Cognitrons could take on the role of Local Mediator or 
Host Mediator. These roles are implemented through inclusion of the Mediator 
Service. The Mediator Service provides the messaging protocols that allow media-
tion between the Mediator Cognitrons and other types of Cognitrons within a SELF 
framework. Mediation functionality includes the storage of long-term memories 
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that utilize FUSE-SEMs and the processing for recombinantly assimilated 
Knowledge Relativity Threads (KRT). Mediator Cognitrons gather and provide 
information and questions posed to Reasoner and Analyst Cognitrons. Mediator 
Cognitrons also provide provisioning capabilities to other Cognitrons. Provisioning 
involves the storage of dynamically loadable service and node modules, and the 
distribution of loadable module to Cognitrons.

10.4.2  Data Acquisition Service

The Data Acquisition Service forms the core of the Data Steward Cognitron func-
tionality. The Data Steward Cognitrons provide internal and external interfaces and 
are the main SELF interface to its sensors. The Data Steward Cognitrons provide 
pre-processing of incoming sensor data (temporarily stored in Sensor Memory), 
applies context using KRTs [229] and utilizes metadata for characterizing the raw 
sensor inputs, then repackages and/or reformats the data for use by other Cognitrons, 
and then stores the data in a SELF’s short-term memories. The Data Acquisition 
Service notifies Data Flow services of the availability of the data, handing off 
responsibility for further processing the Data Flow services. The Interface 
Cognitrons support both existing and future sensory sources via the nodal plug-ins 
and nodal strategies (Fig. 10.13).
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10.4.3  Signal Processing Service

The Signal Processing Service utilizes core strategies within the service nodes, dis-
cussed later in this chapter, for dealing with various aspects of data/information 
processing and manipulation across a SELF. This includes, but is not limited to:

• Feature Extraction
• Data/Information Characterization
• Data/Information Clustering
• Pre-Processing

 – Data/Information Identification (source and type)
 – Feature Identification
 – Error Detection (including anomalies)

• Sensor Specific Feature Extraction
• System Health Processing and Characterization

 – Diagnostics
 – Prognostics

• Data/Information Fusion
• Data/Information Classifiers
• Inferences

Signal processing services are utilized by Reasoner and Analyst Cognitrons, but 
may be utilized by other Cognitrons, depending on the domains and environments 
under which the SELF is being deployed. The Signal Processing Services provide 
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the reasoning strategies that enable decision support and used by PENLPE for 
cognitive management, as well as use by the Artificial Prefrontal Cortex for resource 
management. The Dialectic Argument Structure discussed earlier makes extensive 
use of Reasoner and Analyst Cognitrons with a variety of Signal Processing Services 
that contain a variety of node plugins and node strategies.

10.4.4  The Data Flow Service

Data Flow Services handle the routing of Data/Information to Cognitrons that have 
already been processed by the Data Acquisition Services. This may including 
include causing data/information to be moved through other Cognitrons which are 
proxy agents moving data to other Cognitrons. Data Flow Services also provide 
scheduling of data/information movement between Cognitrons so that Cognitrons 
can receive data/information when needed.

Access to archived data/information from Data Acquisition Services is an asyn-
chronous process to the acquisition of data/information. To support the asynchro-
nous nature of information flow within a SELF, Data Flow Services handle requests 
from other services for data/information, which allows Data Acquisition Services to 
be unburdened by incoming Cognitron requests while data are flowing through the 
Data Acquisition Services. This “separation of concerns” allows the highest data 
flow rate within a SELF.

Data Flow Services also handle communication between Cognitrons. Each 
Cognitron’s neighbor configuration determines the remote Cognitrons to which data 
can be sent to or from, and which data can be received. Services within each 
Cognitron pass data to Data Flow Services with destination information and the 
Data Flow Services provide transfer of this data/information.

10.4.5  Alerts and Alarms Service

All services within a SELF generate alerts and alarms. The Alerts and Alarms 
Services provide a distribution point for these information objects within a SELF 
framework. Various services within a SELF register for notification of specific alerts 
and alarms. Services also deliver alerts and alarms to the Alerts and Alarms Services 
for subsequent distribution throughout a SELF framework.

Multiple alarms from several cognitive components about many unknown data/
information sources within a short time period might trigger a serious warning alert 
rather than a precautionary alert. The priority and severity of the alert will drive the 
cognitive infrastructure to different reactions, based on the internal Autonomic 
Nervous System state that results from the alerts. Alerts, therefore, carry severities, 
priorities, age, parentage, and history parameters/information that are transmitted 
through the cognitive infrastructure.
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Multiple alarms from several cognitive components about many unknown  data/
information sources within a short time period might trigger a serious warning alert 
rather than a precautionary alert. The priority and severity of the alert will drive the 
cognitive infrastructure to different reactions, based on the internal Autonomic 
Nervous System state that results from the alerts. Alerts, therefore, carry severities, 
priorities, age, parentage, and history parameters/information that are transmitted 
through the cognitive infrastructure.

The Alerts and Alarms Services provide registration facilities to other services. 
Registration allows a service to be notified when a requested alarm or alert has been 
submitted by another service. The Alerts and Alarm Services pass their alarm and 
alert objects to services that have registered for notification. The meaning that is 
applied to the alarm or alert is the responsibility of the service that receives the notifi-
cation. The collection of available alerts and alarms is maintained by the Alerts and 
Alarms service. The collection of alerts and alarms has an initial static definition that 
is extended by services that register for their own collection of alarms and alerts within 
this service. The definitions also evolve as the system evolves. Once a new alert or 
alarm has been asserted by a SELF ISAAC cognitive framework, it is officially added 
and the definition is published to allow services to register for notification.

10.4.6  Health Assessment Service

The Health Assessment Service is an internal monitor of overall SELF system 
health and status. This service takes on many forms within a SELF ISAAC cogni-
tive framework, depending on the cognitive level it is operating within. There are 
Cognitrons that contain Health Assessment Services to monitor the health and sta-
tus of cognitive functions as well as hardware and overall service health. These 
include, but are not limited to:

• Lower cognitive brain functions (discussed earlier),

 – Information flow (heartbeat)
 – Sensor availability (sight, hearing, etc.)
 – Power availability (breathing)
 – Etc.

• Higher cognitive functions

 – Artificial Prefrontal Cortex
 – Artificial Neocortex
 – Artificial Hypothalamus
 – Etc.

• Hardware

 – Processor utilization
 – Memory utilization
 – Internal network utilization
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• Services
• Memories (e.g., short-term, emotional, long-term, etc.) stability and read/write 

availability and timing

In terms of service health, the Health Assessment Services keep track of pre-
defined node and service states for Cognitrons in which the services reside. If a 
monitored service or node state violates its defined criteria, the appropriate notices 
are sent to the Alerts and Alarms Service for distribution.

As described earlier, internal models of a SELF cognitive system are kept and 
scenarios run against them to ensure the system understands itself and potential 
changes. System Health fault scenarios are also run and the resultant faults are 
tracked, and alert and alarm triggers are created for these possible fault conditions 
within a SELF cognitive ecosystem.

All services, as well as nodes within each service, implement a common set of 
states as well as node/service specific states. Groups, or coalitions of Cognitrons, 
together form a given cognitive functionality within a SELF (e.g., hypothalamus) 
and also implement a common set of states which evolve as the system evolves. Each 
Cognitronic entity that creates a state also provides the validity tests for these states. 
The Health Assessment Services at each level of cognitive assessment calls those 
validity tests to perform health assessments. Additionally, there are specific tests for 
each Cognitron archetype. Cognitron specific tests are run to validate the overall 
state of each Cognitron. These include tests that verify required services and nodes 
within the specific Cognitron are available and functioning. All Health Assessment 
Services must register their monitoring results with the Alerts and Alarms Services.

10.4.7  Inference Engine Service

Data/information within a SELF cognitive processing infrastructure is collected 
from a variety of sensors as illustrated before in Fig. 9.10. The diverse sources of 
information that may come through the sensors may not (and often do not) have 
consistent contextual structures; each introduces ambiguity into the correlation, 
analysis, reasoning, and inference processes that may be applied to such data/infor-
mation. A SELF cognitive processing framework, like the ACNF, provides the com-
putational and processing capabilities to organize the incoming sensor information 
semantically into meaningful fuzzy concepts and Binary Information Fragments 
that allow the Dialectic Search Argument processing to create cognitive hypotheses 
as part of a SELF’s overall cognitive topology.

Humans utilize fuzzy language and communication, adapting and evolving the 
way they process to best fit the needs of personal and conceptual views [7]. These 
views are based on individual and communal goals and visions gained over time and 
with personal and communal experiences. The Cognitron Inference Service 
addresses the problems of autonomous information processing by communicating 
concepts fuzzily between processing components within a SELF ACNF (Cognitrons, 
their services, and their nodes), in order to adapt a SELF cognitive processing 
framework to a changing, real-world, real-time environment.
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An Inference Engine Service utilizes cognitive processes formulated and embedded 
within a SELF Genetic Neural Fiber Network, and the Stochastic Decision Making 
algorithms discussed earlier work toward the goal of minimizing ambiguity and 
maximizing clarity; while simultaneously achieving the necessary results. The 
Inference Engine Services is designed to perform fuzzy, possibilistic reasoning and 
analysis, based on fuzzy rules and inferences given in symbolic form [65, 66]. The 
Inference Service supports evaluation of:

• Fuzzy inferences
• Fuzzy and/or/not operations
• Arbitrary nesting and chaining of fuzzy expressions
• Multiple assignment operations
• Pre-defined and domain defined hedges
• Unconditional assignment operations
• Dynamically weighted values
• Evaluation of single rules or entire blocks of rules.

The Fuzzy, Possibilistic Inference Engines are structured and used in a variety of 
ways throughout a SELF ISAAC cognitive architecture [67]. This includes the use 
of Cognitrons in Reasoner and Analyst configurations. These are utilized within the 
FUSE-SEMs, the FUNNs, the Genetic Fiber Network, and the DAS; all within  
the ISAAC cognitive framework and a SELF’s ACNF processing infrastructure. 
The Inference Engine Service parses and evaluates rules that have been registered 
with the inference engine and are provided through service nodes that implement 
the strategies related to fuzzy inference processing. There are a variety of fuzzy 
inferences that are utilized within a SELF cognitive processing system. Standard 
inference implications that are utilized are:

• Dienes-Resher Implication:

 
m m mR A Bx y x y, max ( ), ( )( ) = −( )1

 
(10.1)

• Zadeh Implication:
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(10.2)

• Lukasiewicz Implication:
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• Gödel implication:
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In addition, there are specific inferences that are utilized to provide the type of 
abductive heuristics utilized in human reasoning. The DAS, within the DART 
Occam Abduction framework, works to find inferences that both support and rebuts 
the genetically generated Occam hypotheses. Given the abductive nature of human 
implication logic required to hypothesis testing and inferencing, specific fuzzy, 
abductive inferences are required to assess the “rebutting” nature of the DAS. Four 
specific abductive fuzzy inference implications are utilized within by the Inference 
Engine Services are:

• Abductive, Fuzzy Modus Tollens
• Abductive, Fuzzy Modus Ponens
• Abductive, Fuzzy Inverse Modus Ponens
• Modified Fuzzy Abduction

These are all specific forms of implications that have been adapted for a SELF 
from a more general type of human Experience-Based Reasoning (EBR) implica-
tions, known as Condition-Based Reasoning (CBR) [161, 182]. CBR emulates 
human abductive and deductive reasoning which simulates the experimental Occam 
Reasoning principles, and therefore are useful and appropriate within a SELF’s cog-
nitive processing framework. The purpose of these Abductive Inference Implications 
is to provide experimental case reuse and case retention within a SELF ACNF 
Conceptual Ontology and the Inference Engine Services within the DART ISAAC 
cognitive architecture. For this application, we utilize the notion of CBR that refers 
to the notion that past experiences, combined with a given set of observations and 
inferences, can be used to provide an “influence,” or starting point for the DAS 
genetic hypothesis generation and testing use to explain a similar, but not identical 
set of observations [120]. These abductive, fuzzy inference implications follow 
from the Occam abductive principles described in Chap. 8:

Similar observations and similar problems probably have similar solutions or explanations. [73]

10.4.8  Prognostic Service

We briefly mentioned prognostics as part of the capabilities provided by the Health 
Assessment Services, and basic prognostic capabilities are included in the Health 
Assessment Service nodal strategies [55]. However, cognitive prognostics is such 
an integral part of the overall health of a self-assessing, autonomous, artificially 
conscious SELF, that a separate service is required to accommodate comprehensive 
health understanding and predicting cognitive health issues within the ISAAC 
 cognitive architecture. Here, the Prognostic Service nodal strategy capabilities 
allow an assessment of a component, coalition, or entire cognitive system’s current 
and future health predictions. There are two variations of this prognostic health 
determination. The first is a short-term prediction that is needed to understand if  
the component being assessed will be able to complete its current task/mission.  
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The second assessment is to perform prognostics to determine whether the component 
will be stable long-term, or what is the Remaining Useful Life of the component, 
and when is failure or problem likely to occur, what conditions may exist to cause 
the failure, and how can it be measured.

The Prognostic Services provide specific information to Cognitrons and, through 
communication, to the Host Mediator Cognitron. Figure 10.14 illustrates the infor-
mation flow and high-level architecture of the Prognostics Service.

10.4.9  Decision Reasoning Service

The Decision Reasoning Services within a SELF serve many purposes within the 
ISAAC cognitive processing framework. The main purpose of Decision Reasoning 
Services is to provide recommended actions (behavior selections), decision alterna-
tives, and the implications associated with each action or behavior. Recommendations 
may include effectors to accomplish a mission, maintenance action. A SELF user or 
developer is unlikely to want a SELF with pending cognitive issues or pending cogni-
tive problems when it is supposed to be performing to specific goals and objectives.

Decision Reasoning Services within Advisor Cognitrons take into account histories 
from History services within the Cognitron structure. These include current and future 
mission or task profiles, high-level objectives, low-level “life” objectives, and resource 
constraints provided by the Cognitive Economy processes. Actions, behaviors, and 
implications are passed to the Signal Processing Services within Cognitrons as feed-
back for cognitive condition monitoring. The information is also communicated to 
Interface Cognitrons to broadcast the information internally, and externally, if needed.

10.4.10  Histories Service

A SELF History Service provides pedigree information to various processes and 
 services within a SELF ACNF processing framework. They are used by Design 
Reasoning Services, Prognostic Services, etc., based on usage, maintenance, and current 

Generic Prognostics Process
Sensor

Features

Knowledge-Based
Features

Historical
Data

Evolutionary-Based
Prognostics

Model-Based
Prognostics

Prognostics
Update Process

Health
Predictions

Fig. 10.14 SELF Cognitron prognostics service architecture

10 Artificial Cognitive Software Architectures



www.manaraa.com

221

situational awareness within a SELF ISAAC artificial cognitive framework, based on a 
particular domain. These histories are information that may have been provided as a 
SELF was being constructed (manufacturer information, etc.) or may be information 
collected during the initial cognitive testing of a SELF. History Services take informa-
tion, data, queries, DAS hypotheses, and correlate them utilizing the FUSE-SEMs to 
provide contextual information based on relevant situational analysis and parameters 
(metadata).

10.4.11  Configuration Service

The Configuration Services provide a single point of management for Cognitron 
configuration. Incoming configuration requests for Cognitrons from the Host 
Mediator Cognitron or other cognitive component within a SELF ISAAC cognitive 
framework are routed to the appropriate Cognitron services and nodes. Requests for 
configuration information are pulled from services and nodes and then routed back 
to the requesting process. Configuration requests are transmitted throughout a SELF 
framework utilizing a Cognitive communications network that is specifically cre-
ated for a SELF cognitive framework, based on the environment, hardware architec-
ture, and overall system configuration.

10.4.12  Human Systems Interface Service

Since the purpose of a SELF is perform services and tasks for humans, there are 
times when it is necessary for a SELF to interface with humans, other SELFs, or 
some other type of system. The Human Systems Interface Services provides an 
interface for a SELF to interact with humans for informational or collaborative pur-
poses. Other services within the Cognitron services allow for external interface 
data/information/knowledge to be routed to other services within the Cognitrons or 
to external Cognitrons.

Data export capabilities within a SELF cognitive infrastructure (effectors) are the 
only mechanisms within a SELF for data/information/knowledge to leave a SELF. 
Data/information/knowledge can enter a SELF through sensory information com-
municated through Data Steward Cognitrons and can be generated from within any 
of the components of a SELF. Human System Interface Services provide direct access 
a SELF Host Mediator Cognitron, enabling the ability to manage HRI interactions.

10.4.13  Proxy Service

It is possible for a SELF to be implemented across a wide area processing 
 environment, either on a LAN, or implemented across a geographically  
diverse WAN. The architecture allows for this implementation configuration. 
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Under these circumstances it may be necessary for one Cognitron to need a routing 
path to another one. A SELF Proxy Services allows a Cognitron to act as a routing 
path for another Cognitron. Cognitrons make a request to the Proxy Cognitron, 
who forwards the request to another Cognitron. The response is then routed back 
to the original Cognitron.

10.5  SELF Service Node Strategies

We described strategies above, as providing the functional capabilities to the service 
nodes within a Cognitron. The strategies provide the algorithmic “how” for the 
functionalities and capabilities within a SELF Cognitrons. As explained, strategies 
are carried within the service nodes and provide the nodes with their abilities, based 
on the context of the service nodes. There are two main categories of nodal strate-
gies within a SELF:

• Domain Independent Strategies: these provide the basic cognitive abilities 
required for the SELF.

• Domain Dependent Strategies: these are very specific to the domain, environ-
ment, or mission of the SELF and cannot be known a prior.

Domain Independent service nodal strategies provide a SELF with those cogni-
tive and processing capabilities that are required regardless of the domain within 
which a SELF is utilized. A SELF’s Domain Independent strategies include, but are 
not limited to:

• Resource Management
• Rules
• Inference Implications
• Learning
• Decision Management
• Memory Creation
• Memory Integration
• Memory Construction
• Cognitive Needs (e.g., Lower Brain Function Executives)

With the understanding that within each category of strategies listed above, there 
may be up to hundreds of individual strategies that fit within that category that are 
used by service nodes within a SELF.

10.6  Discussion

We have described software structures that facilitates a SELF’s artificial cognitive 
processes. Chapter 11 will discuss the physical architectures that are necessary to 
provide the processing, memory, and network infrastructures to run a SELF’s cogni-
tive software.
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                    As we have discussed throughout the book, a SELF is a hardware/software artifi cial 
cognitive system designed to mimic human reasoning, learning, and understanding. 
The fi rst ten chapters have concentrated on the cognitive side of the software archi-
tectures and frameworks to accomplish artifi cial consciousness and artifi cial human 
cognitive skills [ 9 ,  10 ]. However, the next few chapters will focus on the pragmatic 
computer software and hardware architecture upon which the cognitive software 
functions will operate and be processed. Computer processing units, electronic 
memory devices, and information networks are requirements in order for the cogni-
tive software to exist, operate, and function. 

 Architectures and frameworks discussed in previous chapters are have complex 
functions and somewhat complicated dynamically modifi able and real-time collab-
orative software frameworks that require appropriate software stacks and perfor-
mance based hardware to support major communications channels and accommodate 
loose coupled, ubiquitous Cognitrons that drive a SELF’s cognitive processes. We 
describe an approach to a fl exible, scalable, modular software and hardware pro-
cessing architecture that not only accommodates a SELF today, but can be as much 
as possible dynamically reconfi gurable and evolvable to accommodate SELF auton-
omy. We will illustrate and describe our current approach and discuss future plans 
to evolve the architecture. 

11.1     The Reconfi gurable Advanced Rapid-Prototyping 
Environment (RARE) 

 The RARE hardware architecture is a scalable signal processing and computing 
architecture that utilizes state-of-the art high-performance general purpose proces-
sors, Field Programmable Gate Arrays (FPGAs), and fl exible I/O fabrics to facili-
tate processing systems where conventional back-plane/blade server applications 
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are not viable solutions   . 1  A SELF is one such application. For a SELF to be an 
autonomous land/sea/air/space cognitive system, a SELF hardware/software infra-
structure must be fl exible to accommodate a variety of size and form confi gurations. 
The RARE hardware architecture provides a compact, low-power, light-weight pro-
cessing framework that is ideal for implementation of a SELF within an unmanned 
vehicle that is resourced constrained. RARE 2  provides an ‘out-of-the-box’ hardware 
architecture approach suitable to a SELF. Figure  11.1  shows a set of RARE proces-
sor and FPGA boards.

   The heterogeneity of processing elements within a SELF cognitive processing 
framework demand a fl exible, scalar, and modular footprint that allow general pur-
pose/multi-core processors, FPGAs, and possibly ASICs (Application Specifi c 
Integrated Circuits) that might be used for specialty processing (an “expert” within 
a SELF ISAAC/ACNF cognitive processing architecture). The ability, within the 
cognitive evolution, to be able to evolve the FPGA confi guration autonomously 
provides the capability to operate cognitive portions of the artifi cial cognitive frame-
work at hardware speeds, not software speeds.  

1   © Colorado Engineering, Inc., Nancy Scally, CEO. 
2   The RARE computing technology was sponsored by the Missile Defense Agency under the Small 
Business Innovation Research (SBIR) program awarded to Colorado Engineering, Inc. 

  Fig. 11.1    RARE processing boards       
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11.2     Physically Modularity and Scalability 

 One of the many uses for a SELF is for autonomous operations (e.g., deep underwa-
ter, deep space, intra-corpus, etc.). Many systems including systems embroiled in 
autonomous operations, require considerations for hardware architecture of size, 
weight, and power, (aka. SWaP). A SELF requires additional considerations due to 
the need for rapid resource availability and scalability in real-time operations to 
mimic brain like cognitive functions.. The use of a modular, scalable, heterogeneous 
processing architecture like RARE provides very high performance characteristics, 
while providing the low SWaP profi les needed for extended autonomous operations. 
The RARE technology concept is shown in Fig.  11.2 , which illustrates RARE pro-
cessor boards connected in a variety of confi gurations.

   A unique characteristic of RARE processor boards is that they can be connected 
in a full three-dimensional confi guration, illustrated in Fig.  11.3 , enabling full three- 
dimensional cross cube communication capabilities. This allows SELF Cognitrons 
to communicate rapidly and effi ciently to any other Cognitron within the processing 
system, and enables SELF control authorities (e.g., Artifi cial Prefrontal Cortex) to 
communicate more easily throughout a SELF cognitive framework.

   For use with a SELF, each board within the 3-D confi guration would carry up to 
64 GB of RAM, and up to 0.5 TB of fl ash memory to accommodate the cognitive 
processing, storage, and temporary usage of the Cognitrons and other cognitive 
components within a SELF cognitive framework. This allows a SELF to be decom-
posed into functional embedded processing components within a SELF cognitive 
processing framework which are loosely coupled to a SELF’s high-level common 
operational environment. 

 The fl exible, scalable, but well-defi ned interfaces result in an overall SELF hard-
ware environment that provides a scalable, fl exible, and heterogeneous, embedded 

  Fig. 11.2    RARE processor board connectivity       
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processing hardware framework that can scale in a modular hardware fashion to 
enable a SELF, learning, self-evolving cognitive processing software. The advan-
tages hardware architectures like the RARE architecture bring to a SELF are:

•    They balance state-of-the-art general purpose high-performance processors with 
high-performance specialty processing (e.g., FPGAs, ASICs) providing process-
ing and storage capabilities enabling SELF cognitive processing.  

•   They support an I/O fabric that promotes throughput fl exibility, overall system 
and component-level scalability, as well as interoperability between different 
cognitive processing components.  

•   Contains A/D conversion capabilities to support analog neural processing frame-
works that may be required, depending on a SELF domain.     

11.3     Discussion 

 Cyber security research and artifi cial intelligence research have moved down sepa-
rate paths over the last few decades. Those interested in artifi cial intelligence have 
been focused on how to create software structures that mimic human thought and 
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reasoning, while cyber security has been aimed at understanding and closing 
vulnerabilities in IT computing infrastructures. Unfortunately, all artifi cial intelli-
gence involves the use of IT software and hardware infrastructures and therefore is 
as vulnerable as any other system, although we contend more vulnerable, since 
intrusion, corruption, and other cyber security issues will have devastating effects 
on a self-aware, cognitive, learning, and reasoning SELF. This is especially true 
when a SELF is designed to self-adapt and therefore not completely predictable. 
Since one aspect of cyber security involves monitoring IT infrastructures for unpre-
dictable behavior, capturing cyber security breaches within a SELF that is, itself, 
not completely predictable is a daunting task for Information Assurance frame-
works. Chapter   12     will address cyber security architectures and software structures 
for a SELF, aimed at self-assessment, self-regulation, and self-healing within the 
ISAAC cognitive framework.           

11.3  Discussion
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                    As with any electronic information processing system in today’s world of hackers, 
malware, spyware, etc., security is a major component of the overall operational 
capabilities of a SELF. All information within a SELF must be protected and kept 
from corruption (whether accidental or intentional). Accidental corruption of infor-
mation and knowledge within a SELF is handled through continual cross-checking 
and self-assessment within the ACNF framework. Continuous communications 
between Cognitrons within the system and constant refresh of memory information 
keeps information from being arbitrarily modifi ed (loss of bits) and from corruption 
due to memory failures and catastrophic interference problems discussed earlier. 
However, these do not protect the system from intentional corruptions and hackers. 
Since a SELF is intended to be a fully autonomous, self-evolving, self-learning, 
reasoning artifi cial entity, any corruption of information across a SELF’s artifi cial 
cognitive framework could have devastating effects on a SELF’s learning, reason-
ing, memory, and cognitive processes analoagously to what occurs in injured 
humans (e.g. head injury, Alzheimers). Corruption or incorrect modifi cations to a 
SELF’s needs, constraints, goals, memories, or algorithms could cause a SELF to 
act, evolve, remember, or learn, completely incorrectly and/or out of scope for the 
intentions of a SELF. 

 A SELF’s cognitive framework must contain Cognitive Security Architecture 
(COGSEC) to ensure information is only communicated with parts of the cognitive 
framework that have a need to know the information. That way, any corruption 
within one part of the system cannot be arbitrarily communicated throughout the 
system and cause problems. Corruption within the system can be identifi ed, quaran-
tined, and either corrected or removed before serious damage can be done to a 
SELF. These information fi lters and quarantine processes are similar to the way 
human brain fi lters information and reject wrong or corrupt information. Corrupt 
information is not the same as information that is contrary, or in rebuttal, to a cogni-
tive process or hypothesis the system is trying to resolve. 

 Given that our SELF is a self-evolving system, the Cognitrons and even entire 
Cognitron Coalitions will change and evolve, as will the algorithms within each Cognitron. 
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The information that is required for each Cognitron module will change over time 
(i.e., the Cognitron’s “sphere of infl uence” will change over time). 

 In order to ensure that each information fragment, each memory, each Cognitron 
is secure, each is encrypted differently. It is not necessary to encrypt each with a 
lengthy encryption algorithm. Yes if it is a short encryption scheme it would be pos-
sible to break the encryption code, but you would need to do that for each of the 
billions, possibly trillions of information fragments, inferences, Cognitrons, and 
memories within the system. As Cognitrons evolve and their context and content 
change, their encryption changes as well. This description drives us toward an 
n-dimensional, real-time encryption scheme that provides encryption based on a 
combination of information fragment, topic, need-to-know, and context. However, 
your level of paranoia determines how dimensional your system becomes and the 
volume of characteristics you wish to use. This chapter aims to describe a security 
architecture and encryption scheme to provide security both from outside sources, 
and security within it SELF, to keep corrupted information from permeating the 
system and extending problems within the SELF-evolving cognitive framework. 

12.1     SELF Cognitive Security Architecture 

 Any newly designed systems are slave to the actual hardware and software available 
in the industry at a given point in time. Additionally, there are also standards, condi-
tions and protocols which must be paid homage and utilized to ensure interoperabil-
ity with existing systems. This is especially true for security, since historically the 
organizations and accreditation policies are deeply rooted and traditionally have 
been diffi cult to adapt to new technologies. Recently, there has been a bit more light 
at the end of the security tunnel due to the vast changing environment of today. 
Hence, our SELF’s security ontology and architecture is described here and is based 
on security relationship models described in the National Institute of Standards and 
Technology (NIST). This along with their existing concepts and capabilities are 
adapted for use in a self-evolving, self-aware, self-assessing cognitive framework 
because autonomous self-evolving systems must adapt to adaptive cyber security 
threats which evolve over time as well. A static architecture or approach will not be 
effective for a SELF. Figure  12.1  illustrates an Upper Security Ontology for a SELF.

   Within a SELF security ontology and architecture, we defi ne a SELF cyber secu-
rity attribute relationships so the lower security information ontology can be devel-
oped. Figure  12.2  shows a SELF’s security ontology attribute relationships. 
Figure  12.2  defi nes the hierarchy of relationships between security attributes within 
a SELF information system infrastructure. The assets associated with a SELF’s 
information system/information technology has responsibility to mitigate the risks 
of security threats within a SELF’s cognitive framework. Each risk, vulnerability, 
and threat must be dealt with within the overall design of the cognitive framework 
in order to ensure the ISAAC cognitive framework has the capabilities to recognize, 
learn about, and handle all security-related incidents. The relationships defi ned in 
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Fig.  12.2  lays out how each attribute related to a SELF security infrastructure affects 
each other. Security specifi c Cognitrons (Data, Analyst, Reasoner, and Advisor) are 
utilized throughout a SELF cognitive processing framework to oversee information 
and cognitive processing at every level within a SELF, ensuring that there are all 
information, knowledge, information, and data throughout a SELF is free of corrup-
tion. A threat within a SELF cognitive architecture gives rise to follow-up threats 
that must be dealt with rapidly to avoid extended damage to a SELF cognitive eco-
system. Detrimental threats effects could be:
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•     A threat that represents a potential danger to the information assets (memories) 
within the cognitive ecosystem, and affects specifi c security attributes (e.g., 
integrity, availability, etc.).  

•   Exploitation in the form of administrative weakness within a SELF cognitive 
system (e.g., damage to the Artifi cial Prefrontal Cortex).    

 Additionally, each security threat within a SELF is described by potential threat 
origins and threat sources (accidental or deliberate). In some cases it will require a 
DAS to propose potential hypotheses to explain the threats and the reasoning and 
analysis elements of a SELF would endeavor to solve the security issue. For each of 
the vulnerabilities, a severity value and a SELF asset on which the vulnerability 
could be exploited is assigned. A SELF ISAAC and ACNF frameworks must have 
controls within their architecture to initiate mitigation steps for an identifi ed vulner-
ability and to protest the respective SELF cognitive assets by preventative, correc-
tive, deterrent recover, and/or detective measures. Figure   10.3     illustrates the Lower 
Security Information Ontology for a SELF. 

 Each SELF security control is implemented as a SELF asset concept within the 
ACNF Conceptual Ontology. Each time a threat is encountered, it is implemented as 
an instantiated concept within the ACNF Knowledge Base (Instantiated Ontology). 
Cyber security controls within a SELF framework are derived from and correspond 
to best practices and information security standards and control to ensure a SELF is 
compliant with security standard security controls and measures. The controls are 
modeled on a granular level and evolve within a SELF cognitive framework as the 
system learns and evolves, since a SELF’s internal neural fi ber structure, as well as 
the Cognitrons learn and evolve. These security management controls are imple-
mented within the PENLPE cognitive management structure of a SELF. 

 In Fig.  12.3 , the Security Information Ontology provides a SELF with a working 
model of security entities and interactions within a SELF’s cognitive information 
processing framework, providing the security domain of knowledge and practices. 
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Figure  12.3  provides the specifi cation of security conceptualizations, and is used by 
the security Cognitrons to share knowledge about security-specifi c objects, events, 
and relations.

12.2        SELF Cognitive Security Architecture: Threat 

 Within a SELF security ontological architecture, the Threat Lower Ontology com-
prises natural, accidental, and intentional possible threats to a SELF, followed by 
detailed threat sub-classifi cation. An in-depth description for clarity, as well as 
endangered security objectives are provided for each threat. These detailed descrip-
tions follow the taxonomical structure for:

•    Dependability  
•   Confi dentiality  
•   Integrity  
•   Availability  
•   Accountability  
•   Authenticity  
•   Reliability  
•   Safety    

 Following these taxonomical structures helps develop the security strategies 
regarding specifi c attributes. Often the occurrence of a threat gives rise to, or intensi-
fi es, other threats; therefore, these relationships are refl ected in the ontology. The rates 
of occurrence for each threat are computed using the fuzzy possibilistic inference 
engines, and are linked to the threat and location sub-ontologies, allowing a SELF to 
map location-dependent threat occurrence rates for future reference. Furthermore, 
each threat exploits one or more vulnerabilities within a SELF cognitive infrastruc-
ture. These vulnerabilities are mapped within the vulnerability sub-ontology. 

 Understanding the relationships between SELF threats and endangered assets is vital 
for PENLPE to map a comprehensive security planning. Information Assets (memo-
ries) are refl ected by classes within the ACNF memory infrastructure sub-ontology.  

12.3     SELF Cognitive Security Architecture: Vulnerability 

 Within a SELF, vulnerability is defi ned as the absence of a proper cognitive safe-
guard that could be exploited by a threat (internal or external). We have sub- 
classifi ed the vulnerability sub-ontology into four distinct classes:

•    Administrative vulnerability (the ability to manage the cognitive framework)  
•   Physical vulnerability  
•   Cognitive vulnerability  
•   Technical vulnerability    
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 Each of a SELF’s vulnerabilities can be exploited by pre-defi ned threats (which 
will evolve over time) within the threat sub-ontology and mitigation is achieved by 
selection of one or more controls which are implemented by PENLPE elements 
within the ISAAC cognitive infrastructure, Artifi cial Prefrontal Cortex controls, or 
within the Cognitron software sub-ontology. 

 The infrastructure section of a SELF Security Ontology contains a wide range of 
physical and artifi cial cognitive elements which are utilized within the cognitive 
ecosystem (e.g., self-soothing). The security infrastructure sub-ontology provides 
structural elements which enable the mapping of physical and cognitive environ-
mental elements. Vulnerability severity ratings (critical, important, moderate, and 
low) enable additional vulnerability classifi cation. Within the vulnerability defi ni-
tion we include a separate relativity thread (KRT) that indicates the corresponding 
ISAAC cognitive infrastructure element that causes certain vulnerabilities.  

12.4     SELF PENLPE Security Management Ontology 

 Figure  12.4  illustrates a high-level view of the PENLPE security information pro-
cessing architecture. This information processing environment utilizes many of the 
elements of the ISAAC and ACNF cognitive resources, as indicated in Fig.  12.4 . 
The overall PENLPE Security Management Ontology is illustrated in Fig.  12.5 .

    The overall goal is to provide a highly reliable, available and secure cognitive 
processing environment for a SELF; given a real-time, continuously changing, 
evolving external and internal environment. Some of the underlying technologies 
and mechanisms that make this possible within a SELF are the DAS, the FUSE- 
SEMs, and the Reasoner and Analysts Cognitrons. 
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 The Security Management Ontology illustrated in Fig.  12.5  provides the SELF 
security vocabulary of terms, specifi cations of their meaning and includes defi ni-
tions and indicates how the SELF security concepts are inter-related. Collectively, 
they impose a structure on the SELF security domain and constrain the interpreta-
tion of security terms within the SELF cognitive framework, allowing a common 
understanding between Cognitrons. Of note, is the Reputation-Based Voting (RBV) 
processes, where the system inherits its general security implication from informa-
tion gathered about the reputation of the external entities with whom a SELF is 
interfacing. In particular, these algorithms allow for the routine production of statis-
tics and fuzzy metrics that are useful for security monitoring purposes, and it pro-
vides a coherent cognitive framework to limit intrusion of the system or corruption 
of information into the system.  

12.5     SELF Security Management: Self-Diagnostics 
and Prognostics 

 A critical part of a SELF PENLPE security architecture is the use of the Cognitron 
Diagnostic and Prognostic services. These services include node strategies that 
allow them to detect security faults in early enough stages to enable a SELF frame-
work to do something useful with the fault information. 
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 Security fault isolation and diagnosis uses detection events as the start of a DAS 
hypothesis process for fault classifi cation within the cognitive element being moni-
tored. Condition and/or failure prognosis then forecasts the issues and potential 
future problems; which includes detection and prognosis of time to degradation 
below an acceptable level (Remaining Useful Life). Specifi c requirements, in terms 
of confi dence and severity levels, are identifi ed for diagnosis and prognosis of criti-
cal failure modes. As a minimum, the following possibilistics are used to specify 
fault detection and diagnostic accuracy:

•    The possibility of anomaly detection within the cognitive ecosystem, including 
false alarm rates and fault possibility statistics.  

•   The possibility of specifi c security fault diagnosis classifi cations, utilizing spe-
cifi c confi dence bounds and severity predictions.    

 To specify prognostic accuracy requirements, we defi ne:

•    The level of condition security degradation beyond which cognitive operations 
are considered unsatisfactory or undesirable to the mission or current tasking.  

•   A minimum possibility that Remaining Useful Life of the cognitive element will 
be equal to or greater than the minimum warning level indicated by the Cognitive 
Economy algorithms.    

 The emotional learning and self-soothing techniques described in previous chap-
ters are utilized to provide security prognostics and self-healing within a SELF cog-
nitive infrastructure. The allows a SELF to radically enhance the ability of the 
system to perform self-assessment and self-prognosis, based on the notion of emo-
tional learning and emotional memories to provide a contextual basis for criticality 
of security faults and overall system conditions. These may be based on previously 
learned security and environmental (external or internal) information. 

 A comprehensive SELF security philosophy integrates the results from the moni-
toring sensors within the ISAAC cognitive architecture, all the way through to the 
Reasoner Cognitrons that provides the decision support for the Cognitive Economy 
algorithms to optimally allocate resources within a compromised SELF. The core 
component of a SELF overall security strategy is based on its ability to:

•    Accurately predict the onset of impending security faults/failures  
•   Quickly and effi ciently isolate the root cause of security failures once failure 

effects have been observed.    

 The PENLPE diagnostic and prognostic capabilities require an integrated mat-
uration environment for assessing and validating a SELF’s system security accu-
racy at all cognitive levels within a SELF. This allows for inaccuracies to be 
quantifi ed at every level within the cognitive ecosystem and then be assessed auto-
matically up through the PENLPE security architecture. The fi nal results are 
reported up through the cognitive hierarchy to Reasoner and Decision Support 
Cognitrons for processing and reporting to the Artifi cial Prefrontal Cortex (Host 
Mediator Cognitron).  
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12.6     PENLPE Prognostic Security Management (PSM) 

 Prognostic management within a SELF cognitive framework consists of the 
ability to:

•    Monitor and predict failures.  
•   Predict what the security health of a SELF cognitive components/sub- components 

will be at some time in the future.  
•   Assess the criticality of this future condition, in terms of a SELF’s current mis-

sion/tasks and the possibility of mission/task completion.    

 The role of the PENLPE Prognostic Security Management (PSM) is to:

•    Predict what the security health of the SELF cognitive components/sub- 
components will be at some time in the future.  

•   Assess the criticality of this future condition, in terms of the SELF’s current mis-
sion/tasks and the possibility of mission/task completion.    

 The use of emotional memories within the PENLPE PSM provides:

•    The ability to assess the criticality of current and future predicted SELF security 
in terms of success.  

•   Aids the speed at which information is provided and transmitted to Cognitron 
coalitions within a SELF cognitive framework.    

 This prediction can be for a short-time horizon, or an estimate of the time until a 
failure or security issue will occur. There are a variety of issues that need to be con-
sidered to facilitate these abilities. The PENELPE PSM Cognitrons need to accu-
rately predict into the future, and those predictions are required to be unbiased and 
to have a small variance in order to be useful. However, the emotional context of the 
predictions, in light of the context of current cognitive parameters, can help provide 
insight into the predictions. The emotions states, in terms of self-soothing become 
important and will be discussed further.  

12.7     Abductive Logic and Emotional Reasoners 

 As we have discussed throughout the book, abductive reasoning allows a SELF to 
provide explanatory hypotheses. These hypotheses, or new ideas, in this context, 
are about security faults and cognitive performance indicators. This type of 
Reasoner Cognitron within the PSM is primarily used at the coalition and higher 
levels and not at the lower service or node level. We utilize abduction because 
abduction is the process of forming explanatory hypotheses and is the only logical 
operation that allows the introduction of new ideas [ 145 ]. We utilize abduction 
throughout the PSM process because abduction allows the examination of a large 
amount of  observations, or facts, and suggests theories as to their cause [ 161 ,  162 ]. 
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In this way we gain new ideas, but there is not force in the reasoning. Deductive logic, 
or necessary reasoning, is applied on when we need to deduce from the population 
of hypotheses, each with support and rebuttal information from the DAS, a set of 
consequences to the effect that if a SELF performs in certain ways, then a SELF 
will be confronted with certain experiences. In this way we can provide sets of 
cause and effect concepts within a SELF’s conceptual ontology, with respect to 
security events. 

 As we explained above, one way to enhance, or accelerate this process is to add 
in the notion of emotion learning into the PSM process. This is done by assessment 
of how the SELF has reacted to situations in the past, and the results of those reac-
tions. In other words, how the SELF feels about the possible solution. Possible solu-
tions can be assessed quicker with the context of emotional memories, in light of the 
current problem or situation.  

12.8     Self-Soothing Mechanisms 

 Here we describe the adaptation of self-soothing techniques from human neurosci-
ence to a SELF’s artifi cial cognitive architecture (ISAAC) [ 106 ]. The following 
sections illustrates how the use of the cognitive constructs within a SELF, the DAS, 
the FUSE-SEMs, etc., work together to provide self-soothing constructs within a 
SELF cognitive ecosystem. 

12.8.1     SELF Self-Soothing: Acupressure 

 Artifi cial cognitive acupressure involves polling all of a SELF’s available resources, 
refreshing the view of a SELF ISAAC cognitive infrastructure. This is basically tap-
ing on a SELF to see what response is generated [ 78 ]. Combining this with retriev-
ing emotional memories involved in the current condition and mission/task context 
allows the Cognitrons to “calm down” and concentrate on fi nding solutions to the 
current problem. This utilizes the DAS genetic hypothesis search, in conjunction 
with the FUSE-SEMs to look for solutions; forming a SELF version of an Emotional 
Freedom Technique (EFT) [ 102 ].  

12.8.2     SELF Self-Soothing: Deep Breathing 

 When you are scared, you might contract your body and hold your breath to try to 
squish the feelings in order to keep from feeling bad. Pulling your body in tight and 
stopping your breath keeps you from getting good oxygen to deal with whatever 
upsets you. In SELF cognitive system health terms, this is paramount to 
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conservation of resources (Cognitive Economy) and not allowing the system to 
release hardware and software resources that may be required to “heal the current 
situation.” 

 Deep breathing within a SELF ACNF involves releasing a plethora of Cognitrons 
to access all parts of a SELF and collaborate in a calm, organized fashion (i.e., 
breath in and out) and form a cognitive collective grouping of possible solutions to 
the current situation [ 33 ].  

12.8.3     SELF Self-Soothing: Amplifi cation of the Feeling 

 Exaggeration of feelings in a SELF entails fl ooding the system with genetic DSA 
searches with constraints based on an exaggeration of the emotional memories. 
In fuzzy inference sense, this is moving from a fuzzy membership function of 
“greater than” to one of “much greater than”, or “much less than” instead of “less 
than.” This allows a SELF to concentrate on solutions that are the most appropri-
ate and eliminates the majority of “possible” solutions. This acts as a SELF’s 
subconscious.  

12.8.4     SELF Self-Soothing: Imagery 

 In SELF terms, imagery involves creating several genetic populations of solutions 
with a large solution space within the DAS, opening up the mutation and combina-
tion rates to allow for major jumps in the generational solution possibilities (intu-
ition and discovery within a SELF cognitive framework). The FUSE-SEM measure 
spaces are relaxed to allow for a larger possibilistic set of solutions to be abductively 
explored. This helps to jump-start the solution generation process, allowing a wide 
range of solutions, and then completely unavailable solutions can be eliminated, but 
the possible solutions sets are broadcast to as wide a Cognitron coalition population 
as possible; or, as Sherlock Holmes once said:

  When you have eliminated the impossible, what remains, no matter how improbable, must 
be the truth 

 Sir Arthur Conan Doyle, Sr. [ 228 ] 

   Once a viable solution set is created, the constraints, mutation, and crossover 
rates are returned to normal levels, and the solution populations are evaluated. The 
emotions experienced through this process are catalogued and stored in emotional 
memory, with contextual trigger RNAs created and catalogued; coupling emotional 
responses with each solution space. This allows greater effi ciencies when the cur-
rent situation is encountered again.  
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12.8.5     SELF Self-Soothing: Mindfulness 

 Mindfulness within a SELF involves keeping your attention on what is happening at 
the moment. Within a SELF ISAAC framework, this involves tightening constraints 
and FUSE-SEM distance metrics to ensure that attention is paid just to the current 
problem at hand, once the imagery technique has been utilized. This employs 
abductive techniques to sort out only those solutions that carry positive emotional 
learning responses and assessing those solutions fi rst. These solutions are evaluated 
by utilizing Mediator Cognitrons that concentrate on the mission/task needs and 
mission/task criticality to provide necessary solutions that are also pertinent to the 
current situation.  

12.8.6     SELF Self-Soothing: Positive Psychology 

 In regards to humans, positive psychology researches how happy, successful people 
work their life. Within a SELF, the positive psychology processes look for solution 
spaces that have resulted in positive emotional responses, based on learned emo-
tions (emotional memories), and utilizes those methods employed during that inves-
tigation and diagnostic/prognostic period to look for solutions.   

12.9     SELF Internal Information Encryption 

 In order to facilitate providing an internal multi-level secure information encryption 
within a SELF, we employ an encryption scheme (similar to that shown in Fig.   5.8    ) 
that allows information to be encrypted at any combination of information, context, 
content, and need-to-know [ 76 ]. We utilize a multi-dimensional fractal matrix that 
defi nes the real-time multi-dimensional fractal encryption/decryption scheme for 
every combination of topic, information, and context. Internal security levels for all 
three are generated and must match the credential of the Cognitron requesting the 
information in order for the information to be disseminated. Figure  12.6  illustrates 
this concept.

   As information is obtained, the connections to other information and contexts 
for the information, as it relates to other information, is always expanding and 
evolving. It is necessary to create a continuously evolving, secure framework, as 
we discussed above, in order to carry the notion of information, subject, and con-
text in a compact format that can accommodate multi-level security in one 
construct. The multi- dimensional triple-helix quantum fractal encryption frame-
work accommodates this within a SELF cognitive architecture. For each combina-
tion of topic, context, and informational content, there is separate quantum fractal 
encryption algorithm. 
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 Each combination equates to one of the quantum fractal eigenstates and the 
informational fractal can be unpacked at any security level. This allows a continu-
ously evolving, secure, multi-level security, contextual secure framework for a 
SELF. This allows:

•    Reduction in data acquisition and recognition time.  
•   Improved effi ciencies for autonomous decision making.  
•   Improves processing and internal information reporting timeliness.  
•   Effective knowledge and decision management.  
•   This security framework within a SELF allows security policies and procedures 

to learn, self-adapt, and react to rapid changes in situational conditions, while still 
providing a very secure framework to protect a SELF’s cognitive structures.     
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12.10     Discussion 

 Keeping a SELF secure if paramount to self-adaptation and effective learning and 
reasoning. Even a minor corruption will radically affect the learning, reasoning, and 
self-evolution of a SELF. Corruption would permeate throughout the system as 
Cognitrons communicate and learn from each other. The architectures and structures 
discussed here are intended to provide a SELF with the tools and capabilities to keep 
its cognitive framework and infrastructure safe from security incidents. One topic of 
current research is Anti-Tampering and how it should be implemented within a 
SELF architecture.                  
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So we have given a SELF the ability to think, reason, adapt, and evolve, as well as 
Metacognitive and Metamemory capabilities to understand its own abilities and 
limitations; including cyber security within its cognitive framework. The Cognitrons 
within the system themselves can learn, adapt, and evolve and can communicate 
with each other, allowing cognitive collaboration and cognitive economy within a 
SELF. So if we can actually build the complete system, if a SELF becomes a real- 
time, fully functioning, autonomous, self-actuating, self-analyzing, self-healing, 
fully reasoning and adapting system, what do we have and what are the ramifica-
tions? In Chap. 3 we discussed how people from different cultures might respond to 
a SELF, and the differences between accepting the system when it looks like a 
machine versus when it looks like a person. We explored the ramifications of giving 
a SELF basic emotions and emotional memories. How might its memories and 
actions be influenced by how people react to it? We also discussed how those reac-
tions might influence how a SELF handles being around people. The overall purpose 
of the book was to begin to describe the capabilities, methodologies, and subsys-
tems that must be in place in order to create a real-time, autonomous, thinking, 
reasoning system. We hope we have allayed fears that a SELF is going to decide to 
take over and eliminate the human race, as Hollywood is so fond of portraying. 
However, we also are not describing a cute, lovable robot, as depicted in the movie 
“Wall-E.” There are other questions that need to be explored such as how to create 
versions a SELF at different levels in its evolutions so as not to have to start over 
again with each SELF we create, i.e. how do we clone a SELF. We also need to 
explore the advantages and disadvantages of SELF entities communicating with 
each other.

In the end, as we push for “autonomous” systems, as we want robots that are 
smart enough to do what we ask, when we ask, and to perform tasks without inter-
vention or supervision, we need to be aware and fully understand the ramifications 
of what we ask. We need to understand how we really get there and how we deal 
with what we get when we get there. After all, we really don’t want to hear a SELF 
reply to us: “I’m sorry Dave I really don’t think I can do that.”

Chapter 13
Conclusions and Next Steps
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13.1  The Future SELF

There are many questions yet to be answered, and questions to be discovered we 
haven’t even though of yet. This book is not the final answer, but is, instead, the first 
step toward providing possible answers to some of the fundamental questions in our 
quest for SELF. In many ways, technology has fallen short of predictions. Many felt 
that by now we would have a fully autonomous SELF that is in use throughout the 
world. In many ways technology has outstripped predictions. Cell phone and internet 
technologies far exceed expectations. Predictions for robotics in the future vary. In 
his article in 2006, Warren [210] predicts that by 2015, 1/3 of all military fighting 
forces will be composed of robots, and that by 2035 we will have fully autonomous 
SELFs in operation in battle situations. Other timelines predict that by 2034 we’ll 
have robot SELFs performing most household tasks. In an article in the BBC news 
from December 2006, it was predicted that there will come a time when artificial 
life forms (robots) will have the same rights as people.1 Whatever the future holds, 
we predict it will be different than anyone expects or predicts, as such is the nature 
of technology. However, we might get a glimpse of the future by looking at some of 
the work currently being done. This book describes the research Dr. Crowder, 
Dr. Carbone, and Ms. Friess have been involved in over the last decade and a half. 
Next we will discuss some of the accomplishment of this research that demonstrates 
the viability of synthetically thinking, learning, self-evolving life forms; these are 
called Reactionary, Evolving, Artificial Learning SELFs, or a REAL SELF.

13.2  Zeus: A Self-Evolving Artificial Life Form

In order to truly understand whether self-evolving life forms were indeed plausible, 
Dr. Crowder undertook a series of experiments over the last 10 years to create and 
test small, artificially intelligent, cybernetic entities that have the ability to think, 
learn, and self-evolve, but a very low-brain function level. These artificial life forms, 
which are created to learn and act like insect life forms, were created with very 
rudimentary cognitive functions to establish whether artificial cognitive architec-
tures are realizable even at a simplistic level. The current instantiation, named 
“Zeus” utilizes a simplistic analog neural network for information transfer through-
out the Zeus’ effector network, and contains a digital low-level cognitive framework 
to affect learning and self-evolving [141]. We utilized controllers that contain 
EEPROM, RAM, and Flash memory in order to facilitate the abilities to learn and 
store learned behavior in as low a SWaP footprint as possible.2 Basic effector 
control commands are stored in EEPROM. As Zeus learns, information is stored in 

1 http://news.bbc.co.uk/2/hi/technology/6200005.stm
2 AVR ATTINY24 and ATTINY44 Microcontrollers are used, with the ATTINY 24 as the 
baseline.
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RAM until it is determined that a behavior has been ‘adequately’ learned, and is 
then stored as a series of commands (procedural memory) into flash memory.

For his analog neural network, we utilize an adaptation of Eq. 2.1, which is 
repeated below:
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The adaptation, shown in Equation 13.1, describes the dynamic equation for 
Zeus’ analog neurons (non-linear amplifiers) [139]:
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Working together Dr. Crowder and Dr. Carbone improved Eq. 13.1 to encompass 
topic strength entropy. Within Zeus’ analog neural network, the digital cognitive 
system monitors the strength of the analog neurons to determine when the strength 
of learning has progressed to the point where the learning should be “committed to 
memory” within the digital cognitive system (RAM). When a series of analog neu-
rons is sufficiently strengthened over time, and have been committed to digital 
memory, such that they create a series of commands or learned behaviors that can 
be considered a “procedural memory,” these are stored in Flash Memory with a tag 
that corresponds to the learned activity or behavior (e.g., turn left). The next time 
Zeus’ sensors relate information such that he needs to move left, this procedure is 
recalled form memory and activated; meaning, he doesn’t have to think about how 
to turn left, he turns left automatically. This is similar to humans driving a car after 
we have learned to drive. Again, this is at a much lower cognitive level than a 
human, but it does allow Zeus to learn and evolve. With Zeus, the goal is to add 
cognitive skills one at a time, perform tests and determine whether he can integrate 
these together within his limited cognitive framework. Once Zeus has reached a 
significant cognitive skill level, a new REAL SELF will be created with all of the 
cognitive skills present at the beginning of activation and determine whether this 
new REAL SELF has an easier or more difficult time integrating the cognitive skills 
together, and whether they arrive at essentially the same cognitive level as Zeus did 
adding cognitive skills one at a time. This will help determine how an artificial life 
form should be “started.” Zeus has been in existence since early September, 2012. 
He has learned to walk, turn, integrate his sensors, plan his movements, and execute 
on his plans, demonstrating autonomous planning, sensory integration, and autono-
mous decision making, none of which is part of his initial programming; although 
the skills to learn, think, and store and recall memories was provided to him ini-
tially. He now carries 25 different procedural memories, which, as explained, are 
series of commands learned for a particular action.
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13.3  Early Research into Cognitrons: Adventures  
in Cyberspace

Dr. Crowder and Dr. Carbone have been involved in research and development of 
intelligent software agents for well over a decade. Many believe that the term “intel-
ligent” agent is in name only and they can never attain any significant level of cogni-
tive intelligence. Here we related a real incident that may help the reader to make 
their own determination.

Over a decade ago Dr. Crowder was being funded by government research and 
development agencies to create and test Intelligent Software Agents, which became 
the predecessors to the Cognitrons. Since these were learning, thinking, evolving 
software agents, they were stopped every afternoon when Dr. Crowder left work to 
ensure they did not “evolve” while unsupervised. As you might expect, this did not 
happen on one given evening, and the agents were active, up and running through-
out the evening. The next morning when Dr. Crowder arrived at work and logged in, 
an Instant Messaging (IM) window opened up from one of his government technical 
contacts. The gentleman on the other end sent the message, “I see you were working 
very late last night,” to which Dr. Crowder replied, “No, I wasn’t.” He then said, 
“Well, I got up around 2:00 a.m. and couldn’t go back to sleep so I went on line to 
check my email. I saw you were on-line and sent you an IM. We chatted for about 
45 min by IM. You were in an odd mood.” He had not been talking to Dr. Crowder 
by IM, he had been talking to the intelligent software agents. When the IM window 
opened up, the software agents took control of the IM window, read his message, 
interpreted it, understood its context, and crafted a reply and sent it. Understand, he 
thought Dr. Crowder was in an odd mood, but not odd enough that he didn’t recog-
nize he wasn’t talking to an actual person. This says two things; first, when given 
sufficient cognitive skills, intelligent agents can think, reason, infer, and make 
coherent decisions, second, we need to be very careful when utilizing such entities 
and much testing is required before allowing one to be used unsupervised in a 
system.

13.4  What’s Next?

What happens when a SELF comes together? SELF will be making decisions 
autonomously based on information that is new, abstract and/or incomplete. All the 
while, autonomously and continuously reprogramming a SELF codebase to resolve 
any internal conflicts. It will be accomplishing this in real time, while learning and 
using information stored and making inferences from all the combination of its 
memories, sensory information, abductive decision reasoning, and behavior pro-
cessing. Human support systems will need to be enhanced to handle this fully 
autonomous Artificial Cognitive System (a SELF). This will facilitate the need for 
new science that will expand to better understand similarities and differences 
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between humans and a SELF in areas such as learning, integration, recall, processing, 
and uses of information. The fields of Psychology, Sociology, Engineering, 
Communications, and Computer Skills Development will all need to be revamped 
to accept Artificial Cognitive Life Forms like a SELF, and we cannot wait until 
these systems are fully functioning. Classes must be developed now in order for 
individuals to be prepared for a new frontier of artificial life forms like a SELF. 
Intuition and emotion may become better understood in the humans as well as a 
SELF. Once we determine the primary arousal states of a system, whether human or 
artificial, then we may better be able to understand the higher level functioning 
that involves other arousal states and understand human autonomic nervous 
responses better.

A SELF, like the human, will be able to handle misinformation, ambiguity, and 
form hypotheses when given incomplete information and imprecise (fuzzy) condi-
tions. A SELF may be able to determine when things are creating conflicts internally 
yet make sense of a world of nonsense. Since this is a fully autonomous, learning, 
reasoning system, it will still be possible for a SELF to make fallible decisions 
based on fallible information, while at the same time be able to make sense of the 
world that is not always exact, such as the human conversation. Even the word 
minute can have so many different and ambiguous meanings; a SELF must be able 
to handle all of these conditions.

As a SELF evolves, the human will need learn about its processes and have 
appropriate expectations. Thus, the human will be less likely to give a SELF attri-
butes that are simply not true, such as Hollywood’s depiction of Artificial Intelligence 
or social rules and expectations that may not apply. Thus, we believe this will allow 
an improved trust between a SELF and humans. Trust will become a necessary 
component for future collaboration between a SELF and humans. In addition, the 
more emotional intelligence a SELF has the more likely a SELF can reason with 
humans on an emotional level, for the human, and become more likable; which in 
turn would increase the chances of collaboration. In addition, a SELF will have the 
capabilities to understand the human better, also increasing the likelihood of enhanc-
ing human-robot collaborations. As a SELF develops and the humans gain clearer 
expectations such as predictability, safety, reliability, trust, communication, knowl-
edge, understanding, and accommodation, the collaboration between human and 
SELF will develop over time.

The main outcome of a SELF and human interaction is cooperative and collab-
orative reasoning. Consider how helpful it will be to bounce ideas off a colleague or 
learn from a mentor and the ways in which those activities change individual human 
reasoning. If a SELF could also be a part of a human’s reasoning outside of its own 
internal reasoning, then we propose a SELF’s reasoning can be enhanced, as well as 
the potential to enhance human reasoning. Memory could be easier recalled if it 
came from internal and external locations with both locations capable of different 
distributed reasoning. So it may become far more than individual, world, and body, 
but it may now include other unique forms, like a SELF. It would seem that a SELF 
could enhance our ability to come to certain conclusions more accurately and in 
efficient ways. It may be the case that each player would enhance knowledge and 
understanding of the others making, an enhanced collaborative team.
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In the end, we have only begun to scratch the surface of an entirely new frontier. 
There are unlimited possibilities, including enhancements to the medical field, engi-
neering, space travel, and possibly enhance our understanding of serious conditions 
like schizophrenia, by utilizing a SELF to better understand how such conditions 
may be overcome through retraining the brain. We are on a journey that was begun 
25 years ago and will not be finished for many more years. Again, we endeavor to 
create artificial life forms that will enhance the human experience, not destroy it as 
Hollywood might have you believe.
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                  Acronyms 

  ACA    Artifi cial cognitive architectures   
  ACNF    Artifi cial cognitive neural framework   
  ACP    Artifi cial cognitive perception   
  ACS    Artifi cially cognitive systems   
  AI    Artifi cial intelligence   
  AIC    Autonomic information continuum   
  ANN    Abductive, neural network   
  APC    Artifi cial prefrontal cortex   
  API    Application programming interface   
  ASIC    Application specifi c integrated circuit   
  BAO    Binary information object   
  BBNN    Bayesian belief neural network   
  BIF    Binary information fragment   
  BMRO    Binary memory reconstruction object   
  BRO    Binary relativity object   
  CBLP    Case-based learning planner   
  CBN    Cognitive behavior network   
  CBR    Case-based reasoning   
  CCO    Cognitive conceptual ontology   
  CEC    Cognitive emotion cognitron   
  CI    Catastrophic interference   
  CITE    Cognitive, interactive training environment   
  CL    Constructivist learning   
  CNS    Central nervous system   
  Cognitrons    Cognitive perceptrons   
  COGSEC    Cognitive security   
  C-SME    Cognitron subject matter expert   
  DART    Decision analytics in real-time   
  DAS    Dialectic argument structure   
  DSA    Dialectic search argument   
  EBR    Experience-based reasoning   
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  EI    Emotional intelligence   
  EML    Emotional markup language   
  FGC    Fuzzy, genetic cognitron   
  FPGA    Field-programmable gate array   
  FuNN    Fuzzy, unsupervised, active resonance theory, neural network   
  FUSE-CTX    Fuzzy, self-evolving, contextual, topical map   
  FUSE-SEM    Fuzzy, self-evolving semantical topical map   
  GPS    General problem solver   
  HIL    Human interaction learning   
  HMS    Human mentored software   
  HoMe    Host mediator   
  HPM    Hypothesis plausibility measures   
  HRI    Human-robot interface   
  HSI    Human-systems interface   
  IC    Interface cognitron   
  IM    Instant messaging   
  ISA    Intelligent information software agents   
  ISAAC    Intelligent information software agents for artifi cial consciousness   
  JPL    Jet propulsion laboratory   
  KB    Knowledge base   
  KO    Knowledge object   
  KRT    Knowledge relativity thread   
  LTM    Long-term memory   
  MC    Mediator cognitron   
  MIM    Mutual information measure   
  MOE    Measure of effectiveness   
  NIC    Neural information continuum   
  NIST    National institute of standards and technology   
  OLAP    Online analytical processing   
  PAC    Probably, approximately correct   
  PANN    Possibilistic, abductive neural network   
  PENLPE    Polymorphic, evolving, neural learning and processing environment   
  PNS    Peripheral nervous system   
  PSM    Prognostic security management   
  RAM    Random access memory   
  RARE    Reconfi gurable, advanced rapid-prototyping environment   
  RBV    Reputation-based voting   
  RC    Reasoner cognitron   
  RNA    Recombinant knowledge assimilation   
  RUL    Remaining useful life   
  SELF    Synthetic, evolving life form   
  SNS    Synthetic nervous system   
  STM    Short-term memory   
  SWaP    Size, weight, and power   
  TMQL    Topical map query language   
  TOI    Topic of interest   
  WM    Working memory   
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